关闭

《算法导论(第2版)》习题6.3-3题解

标签: 算法
3232人阅读 评论(7) 收藏 举报
分类:

Solution to CLRS 2e Exercise 6.3-3

Show that there are at most ceil(n / 2^(h + 1)) nodes of height h in any n-element heap.

A heap node of index i (starting from 1) is of height h if and only if (2^h) * i <= n < (2^(h + 1)) * i, or n / 2^{h + 1} < i <= n / 2^{h}, or floor(n / 2^{h + 1}) < i <= floor(n / 2^h) since i is an integer. Therefore, the number of nodes of height h in any n-element heap is at most floor(n / 2^h) - floor(n / 2^{h + 1}) <= ceil(n / 2^{h + 1}).

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:228413次
    • 积分:3278
    • 等级:
    • 排名:第11050名
    • 原创:90篇
    • 转载:5篇
    • 译文:1篇
    • 评论:166条
    最新评论