关闭

《算法导论(第2版)》习题6.3-3题解

3104人阅读 评论(7) 收藏 举报

Solution to CLRS 2e Exercise 6.3-3

Show that there are at most ceil(n / 2^(h + 1)) nodes of height h in any n-element heap.

A heap node of index i (starting from 1) is of height h if and only if (2^h) * i <= n < (2^(h + 1)) * i, or n / 2^{h + 1} < i <= n / 2^{h}, or floor(n / 2^{h + 1}) < i <= floor(n / 2^h) since i is an integer. Therefore, the number of nodes of height h in any n-element heap is at most floor(n / 2^h) - floor(n / 2^{h + 1}) <= ceil(n / 2^{h + 1}).

0
0

猜你在找
【直播】计算机视觉原理及实战—屈教授
【套餐】深度学习入门视频课程—唐宇迪
【套餐】Hadoop生态系统零基础入门--侯勇蛟
【套餐】嵌入式Linux C编程基础--朱有鹏
【套餐】2017软考系统集成项目——任铄
【套餐】Android 5.x顶级视频课程——李宁
【直播】广义线性模型及其应用——李科
【直播】从0到1 区块链的概念到实践
【直播】机器学习之凸优化——马博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:224123次
    • 积分:3115
    • 等级:
    • 排名:第11020名
    • 原创:90篇
    • 转载:5篇
    • 译文:1篇
    • 评论:161条
    最新评论