AI-Lab
码龄2年
关注
提问 私信
  • 博客:5,948
    视频:4,605
    10,553
    总访问量
  • 13
    原创
  • 1,866,602
    排名
  • 34
    粉丝
  • 0
    铁粉

个人简介:欢迎来到我们的AI工作室!985顶尖跨学科硕博团队,致力于最优质的个性化服务,价格公道~主营‌深度学习、图像处理及各类QT界面定制化开发;所展示的所有QT界面成品都可提供后续定制化修改服务,包括更改背景图、更改按键图表和位置以及实现个性化任务等二次开发

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2022-11-18
博客简介:

2201_75291175的博客

查看详细资料
个人成就
  • 获得3次点赞
  • 内容获得12次评论
  • 获得27次收藏
创作历程
  • 13篇
    2023年
成就勋章
兴趣领域 设置
  • Python
    python
  • 开发工具
    pycharm
  • 人工智能
    深度学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

013 基于YOLOv7-Tiny的目标检测系统

常用包括车辆、行人、飞机、轮船、猫、狗、马、鸟、羊、自行车、瓶、椅子、火车、沙发、餐桌、电视机、盆栽植物等几十个类别进行检测和识别。)加载摄像头进行检测:可以选择摄像头进行目标检测,系统将检测和识别后的结果标注在图像流上并在界面上自动展示。)加载图像进行检测:可以选择图像进行目标检测,系统将检测和识别后的结果标注在图像上并在界面上自动展示。)加载视频进行检测:可以选择视频进行目标检测,系统将检测和识别后的结果标注在视频上并在界面上自动展示。界面的背景、按钮等,界面的操作和相关的代码都有详细的注释。
原创
发布博客 2023.06.10 ·
1292 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

012 基于YOLOv4-Tiny的目标检测系统

常用包括车辆、行人、飞机、轮船、猫、狗、马、鸟、羊、自行车、瓶、椅子、火车、沙发、餐桌、电视机、盆栽植物等几十个类别进行检测和识别。)加载摄像头进行检测:可以选择摄像头进行目标检测,系统将检测和识别后的结果标注在图像流上并在界面上自动展示。)加载图像进行检测:可以选择图像进行目标检测,系统将检测和识别后的结果标注在图像上并在界面上自动展示。)加载视频进行检测:可以选择视频进行目标检测,系统将检测和识别后的结果标注在视频上并在界面上自动展示。界面的背景、按钮等,界面的操作和相关的代码都有详细的注释。
原创
发布博客 2023.06.09 ·
628 阅读 ·
0 点赞 ·
2 评论 ·
2 收藏

011 基于YOLOv8的目标检测系统

常用包括车辆、行人、飞机、轮船、猫、狗、马、鸟、羊、自行车、瓶、椅子、火车、沙发、餐桌、电视机、盆栽植物等几十个类别进行检测和识别。)加载摄像头进行检测:可以选择摄像头进行目标检测,系统将检测和识别后的结果标注在图像流上并在界面上自动展示。)加载图像进行检测:可以选择图像进行目标检测,系统将检测和识别后的结果标注在图像上并在界面上自动展示。)加载视频进行检测:可以选择视频进行目标检测,系统将检测和识别后的结果标注在视频上并在界面上自动展示。界面的背景、按钮等,界面的操作和相关的代码都有详细的注释。
原创
发布博客 2023.06.08 ·
913 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

010 基于YOLOv7的目标检测系统

常用包括车辆、行人、飞机、轮船、猫、狗、马、鸟、羊、自行车、瓶、椅子、火车、沙发、餐桌、电视机、盆栽植物等几十个类别进行检测和识别。)加载摄像头进行检测:可以选择摄像头进行目标检测,系统将检测和识别后的结果标注在图像流上并在界面上自动展示。)加载图像进行检测:可以选择图像进行目标检测,系统将检测和识别后的结果标注在图像上并在界面上自动展示。)加载视频进行检测:可以选择视频进行目标检测,系统将检测和识别后的结果标注在视频上并在界面上自动展示。界面的背景、按钮等,界面的操作和相关的代码都有详细的注释。
原创
发布博客 2023.06.08 ·
858 阅读 ·
2 点赞 ·
2 评论 ·
4 收藏

009 基于YOLOX的目标检测系统

常用包括车辆、行人、飞机、轮船、猫、狗、马、鸟、羊、自行车、瓶、椅子、火车、沙发、餐桌、电视机、盆栽植物等几十个类别进行检测和识别。)加载图像进行检测:可以选择图像进行目标检测,系统将检测和识别后的结果标注在图像上并在界面上自动展示。)加载视频进行检测:可以选择视频进行目标检测,系统将检测和识别后的结果标注在视频上并在界面上自动展示。检测网络作为核心模型,可用于对车辆、行人、飞机、轮船、猫、狗等几十种类别进行检测和识别,并在。界面的背景、按钮等,界面的操作和相关的代码都有详细的注释。界面中将结果可视化。
原创
发布博客 2023.06.07 ·
120 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

008 基于YOLOv4的目标检测系统

常用包括车辆、行人、飞机、轮船、猫、狗、马、鸟、羊、自行车、瓶、椅子、火车、沙发、餐桌、电视机、盆栽植物等几十个类别进行检测和识别。)加载图像进行检测:可以选择图像进行目标检测,系统将检测和识别后的结果标注在图像上并在界面上自动展示。)加载视频进行检测:可以选择视频进行目标检测,系统将检测和识别后的结果标注在视频上并在界面上自动展示。检测网络作为核心模型,可用于对车辆、行人、飞机、轮船、猫、狗等几十种类别进行检测和识别,并在。界面的背景、按钮等,界面的操作和相关的代码都有详细的注释。界面中将结果可视化。
原创
发布博客 2023.06.07 ·
247 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

007 基于YOLOv3的目标检测系统

常用包括车辆、行人、飞机、轮船、猫、狗、马、鸟、羊、自行车、瓶、椅子、火车、沙发、餐桌、电视机、盆栽植物等几十个类别进行检测和识别。)加载摄像头进行检测:可以选择摄像头进行目标检测,系统将检测和识别后的结果标注在图像流上并在界面上自动展示。)加载图像进行检测:可以选择图像进行目标检测,系统将检测和识别后的结果标注在图像上并在界面上自动展示。)加载视频进行检测:可以选择视频进行目标检测,系统将检测和识别后的结果标注在视频上并在界面上自动展示。界面的背景、按钮等,界面的操作和相关的代码都有详细的注释。
原创
发布博客 2023.06.06 ·
246 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

005 基于EfficientDet的目标检测系统

与传统的目标检测模型相比,EfficientDet模型具有更快的检测速度和更好的检测精度,同时对小目标的检测能力也得到了提升。常用包括车辆、行人、飞机、轮船、猫、狗、马、鸟、羊、自行车、瓶、椅子、火车、沙发、餐桌、电视机、盆栽植物等几十个类别进行检测和识别。)加载图像进行检测:可以选择图像进行目标检测,系统将检测和识别后的结果标注在图像上并在界面上自动展示。)加载视频进行检测:可以选择视频进行目标检测,系统将检测和识别后的结果标注在视频上并在界面上自动展示。实现的目标检测系统代码,基于深度学习框架。
原创
发布博客 2023.06.06 ·
197 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

006 基于FasterRCNN的目标检测系统

常用包括车辆、行人、飞机、轮船、猫、狗、马、鸟、羊、自行车、瓶、椅子、火车、沙发、餐桌、电视机、盆栽植物等几十个类别进行检测和识别。)加载摄像头进行检测:可以选择摄像头进行目标检测,系统将检测和识别后的结果标注在图像流上并在界面上自动展示。)加载图像进行检测:可以选择图像进行目标检测,系统将检测和识别后的结果标注在图像上并在界面上自动展示。)加载视频进行检测:可以选择视频进行目标检测,系统将检测和识别后的结果标注在视频上并在界面上自动展示。界面的背景、按钮等,界面的操作和相关的代码都有详细的注释。
原创
发布博客 2023.06.05 ·
282 阅读 ·
0 点赞 ·
3 评论 ·
4 收藏

011 基于YOLOv8的目标检测系统

发布视频 2023.06.05

012 基于YOLOv4-Tiny的目标检测系统

发布视频 2023.06.05

013 基于YOLOv7-Tiny的目标检测系统

发布视频 2023.06.05

010 基于YOLOv7的目标检测系统

发布视频 2023.06.05

001 基于CenterNet的目标检测系统

常用包括车辆、行人、飞机、轮船、猫、狗、马、鸟、羊、自行车、瓶、椅子、火车、沙发、餐桌、电视机、盆栽植物等几十个类别进行检测和识别。)加载摄像头进行检测:可以选择摄像头进行目标检测,系统将检测和识别后的结果标注在图像流上并在界面上自动展示。)加载图像进行检测:可以选择图像进行目标检测,系统将检测和识别后的结果标注在图像上并在界面上自动展示。)加载视频进行检测:可以选择视频进行目标检测,系统将检测和识别后的结果标注在视频上并在界面上自动展示。界面的背景、按钮等,界面的操作和相关的代码都有详细的注释。
原创
发布博客 2023.06.04 ·
190 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

002基于DETR的目标检测系统

发布视频 2023.06.04

001基于CenterNet的目标检测系统

发布视频 2023.06.04

004 基于RetinaNet的目标检测系统

RetinaNet是一种基于深度学习的目标检测模型,它采用了一种新颖的损失函数,称为Focal Loss,以解决目标检测任务中的类别不平衡问题,即目标与非目标的数量差异较大的问题。RetinaNet模型基于特征金字塔网络(FPN),通过在不同层级上进行特征提取和级联特征金字塔,来检测不同大小的目标。相比于传统的目标检测模型,RetinaNet模型具有更好的检测精度和更强的对小目标的检测能力。检测网络作为核心模型,可用于对车辆、行人、飞机、轮船、猫、狗等几十种类别进行检测和识别,并在。界面中将结果可视化。
原创
发布博客 2023.06.03 ·
215 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

009 基于YOLOX的目标检测系统

发布视频 2023.06.03

008 基于YOLOv4的目标检测系统

发布视频 2023.06.03

007 基于YOLOv3的目标检测系统

发布视频 2023.06.03
加载更多