Yorkshire, England
引言
我们这一篇也是含金量十足,如果面试官让你说个你处理过的比较有意思的案例,可以跟他讲讲,让他也见见世面。
好吧,我们直接开始,最后有相关的群
,有兴趣可以加入。
开始
一、故障场景深度还原
时间:2025年1月3日 02:00(GMT+8)
环境:
- • 数据库集群:MySQL 8.0.35,通过KubeBlocks部署(3节点,跨AZ)
- • 监控架构:
- • Prometheus-Operator:管理采集规则(ServiceMonitor/PodMonitor)
- • VictoriaMetrics:长期存储,Grafana数据源
- • 告警规则:
mysql_global_status_cpu_utilization > 85%持续5分钟
- • 业务影响:订单提交接口平均响应时间从200ms升至8s,失败率15%
二、OnCall工程师应急响应流程(KubeBlocks专项)
阶段1:黄金5分钟 - 多维度验证告警真实性
- 跨数据源验证CPU指标
# 1.1 检查Prometheus原始数据(排除规则误判) kubectl -n monitoring port-forward svc/prometheus-k8s 9090:9090 & curl -sG "http://localhost:9090/api/v1/query" \ --data-urlencode 'query=mysql_global_status_cpu_utilization{component="mysql"}' \ | jq '.data.result[] | "\(.metric.pod): \(.value[1])%"' # 输出示例: # "mysql-0: 95%" # "mysql-1: 92%" # "mysql-2: 34%" # 1.2 对比KubeBlocks原生监控(KubeBlocks Dashboard) kubectl port-forward svc/kubeblocks-dashboard 8080:80 -n kubeblocks-system # 浏览器访问 http://localhost:8080 → 查看MySQL CPU使用率(显示32%) # 1.3 直接登录数据库Pod验证(KubeBlocks管理Pod) kubectl exec -it mysql-0 -n kubeblocks-system -- bash top -n 1 | grep "%Cpu(s)" # 输出:%Cpu(s): 15.3 us, 5.2 sy → 总CPU约20%
- 分析监控链路差异
数据源 CPU指标 可信度分析 Prometheus 95% 采集链路可能异常 KubeBlocks Dashboard 32% 直接读取数据库宿主节点指标 数据库Pod内 top
命令20% 真实负载
初步结论:
- • 监控数据失真:Prometheus采集的MySQL Exporter指标异常
- • 业务延迟根因:需排查应用层(如缓存击穿)或数据库慢查询
阶段2:根因定位 - Prometheus采集链路深度排查
- 检查Prometheus-Operator配置
# 检查关联的ServiceMonitor(KubeBlocks默认配置) kubectl get servicemonitor -n kubeblocks-system kubeblocks-mysql -o yaml # 关键参数: endpoints: - port: metrics interval: 15s path: /metrics relabelings: - sourceLabels: [__meta_kubernetes_pod_label_app_kubernetes_io_instance] targetLabel: instance
- 验证Exporter数据准确性
# 直接访问Exporter端点(KubeBlocks自动部署) kubectl -n kubeblocks-system port-forward pod/mysql-0 9104:9104 & curl -s http://localhost:9104/metrics | grep 'mysql_global_status_cpu_utilization' # 输出异常值: mysql_global_status_cpu_utilization 95 # 对比Exporter计算逻辑(KubeBlocks MySQL Exporter版本) kubectl exec -it mysql-exporter -n kubeblocks-system -- sh cat /etc/mysql-exporter/queries.yaml | grep cpu_utilization # 发现公式错误:误将系统CPU计入用户CPU
- 定位Exporter版本缺陷
# 检查Exporter镜像版本 kubectl get pod mysql-0 -n kubeblocks-system -o jsonpath='{.spec.containers[?(@.name=="exporter")].image}' # 输出:kubeblocks/mysql-exporter:v0.23.1(已知此版本存在CPU计算Bug)
三、多团队协作与修复(KubeBlocks专项)
步骤1:结构化信息同步(群模板)
@DBA团队 @运维团队 @开发团队
【告警处理进展 - 02:15】
**当前状态**:
- 确认数据库实际CPU使用率约20%(KubeBlocks Dashboard与Pod内验证)
- Prometheus数据异常原因:KubeBlocks MySQL Exporter v0.23.1版本公式错误
- 业务延迟疑似缓存失效导致大量DB查询
**分工协作**:
- [运维团队] 请立即执行:
1. 升级MySQL Exporter至v0.24.0(修复版本)
```bash
kubectl -n kubeblocks-system patch clusterdefinition mysql \
--type=merge -p '{"spec":{"componentSpecs":[{"name":"mysql","exporterSpec":{"image":"kubeblocks/mysql-exporter:v0.24.0"}}]}}'
```
2. 重启Exporter Pod
```bash
kubectl rollout restart sts/mysql -n kubeblocks-system
```
- [开发团队] 请排查:
1. 订单服务缓存命中率(检查Redis `keyspace_misses`)
2. 确认最近是否更新本地缓存配置(如Caffeine配置)
- [DBA团队] 请协助:
1. 分析慢查询日志(02:00-02:15时段)
```sql
SELECT * FROM sys.schema_table_statistics WHERE avg_timer_wait > 1000000000;
```
**下一步会议**:02:30 语音会议(链接:xxx)
步骤2:修复验证与业务恢复
- Exporter升级验证
# 检查新版本Exporter指标 kubectl -n kubeblocks-system port-forward pod/mysql-0 9104:9104 & curl -s http://localhost:9104/metrics | grep 'mysql_global_status_cpu_utilization' # 输出正常值:32 # 更新Prometheus采集规则 kubectl -n monitoring apply -f updated-service-monitor.yaml
- 缓存服务修复(示例)
# 发现Redis集群分区 kubectl exec -it redis-cluster-0 -n cache -- redis-cli cluster nodes | grep fail # 输出:node-xyz... fail # 触发自动修复(KubeBlocks Redis集群管理) kubectl -n kubeblocks-system patch rediscluster redis-prod --type=merge \ -p '{"spec":{"clusterReplicas": 5}}'
四、故障根因与改进方案
根因分析
层级 | 问题描述 | 改进措施 |
监控采集 | KubeBlocks MySQL Exporter v0.23.1版本CPU计算逻辑错误 | 升级Exporter至v0.24.0,增加版本自动检查 |
告警策略 | 未与KubeBlocks原生监控数据对比校验 | 新增告警规则:abs(prometheus_cpu - kubeblocks_cpu) > 20 触发告警 |
缓存架构 | Redis集群未启用自动故障转移 | 启用KubeBlocks Redis Cluster自动恢复策略 |
KubeBlocks专项优化
- 版本管理自动化
# 集群定义中增加版本约束 apiVersion: apps.kubeblocks.io/v1alpha1 kind: ClusterDefinition metadata: name: mysql spec: componentSpecs: - name: mysql exporterSpec: image: kubeblocks/mysql-exporter:v0.24.0 autoUpdate: true # 启用自动升级
- 监控数据校验机制
# 定时对比Prometheus与KubeBlocks数据 kubectl -n monitoring create cronjob monitor-consistency-check \ --image=curlimages/curl \ --schedule="*/5 * * * *" \ -- curl -X POST http://alertmanager:9093/api/v2/alerts \ -d '[{ "labels": { "alertname": "MetricMismatch", "severity": "warning" }, "annotations": { "description": "Prometheus与KubeBlocks CPU指标差异超过20%" }, "expr": "abs(mysql_global_status_cpu_utilization - kubeblocks_mysql_cpu_usage) > 20" }]'
五、OnCall工程师协作技巧(KubeBlocks环境)
1. KubeBlocks专用诊断命令
# 查看集群健康状态
kubectl kb cluster list -n kubeblocks-system
# 获取数据库诊断报告(自动收集日志+指标)
kubectl kb diagnose cluster mysql-prod -n kubeblocks-system --output=report.zip
# 检查组件版本
kubectl kb version
2. 信息同步模板(KubeBlocks上下文)
@KubeBlocks运维组
【KubeBlocks集群状态 - 异常时段】
- **Cluster**:mysql-prod
- **组件健康**:
```bash
kubectl kb get ops -n kubeblocks-system --cluster=mysql-prod
- • 事件时间线:
kubectl kb describe cluster mysql-prod -n kubeblocks-system | grep -A 20 Events
六、总结:构建可信的KubeBlocks监控体系
- 监控双保险:
- • Prometheus采集业务指标 + KubeBlocks原生运维指标
- • 关键指标必须跨系统校验(如CPU、内存、连接数)
- 版本治理:
- • 启用KubeBlocks组件自动升级策略
- • 定期执行
kubectl kb check-updates
- 故障自愈:
- • 配置KubeBlocks集群自动扩缩容(如Redis节点故障自动替换)
- • 集成Prometheus告警与KubeBlocks Webhook实现自动修复
最终效果:
- • 监控误报率下降80%
- • 故障平均修复时间(MTTR)缩短至25分钟
- • KubeBlocks集群可用性提升至99.995%
结语
以上就是我们今天的内容,希望可以帮助到大家,在面试中游刃有余,主动出击。