【无人机】基于遗传算法的PID控制器增益的实现(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

【无人机】基于遗传算法的PID控制器增益的实现研究

本文利用遗传算法 (GA) 实现,用于调整 PID 控制器的增益。 的重点是无人机(UAV)上使用的PID控制器。模拟二阶系统的动力学。调优基于满意度等标准。

基于遗传算法的PID控制器增益的实现研究——以无人机(UAV)为例

一、引言

PID控制器是一种常见的自动控制器,在无人机的飞行姿态和飞行速度控制中发挥着重要作用。然而,在实际应用中,PID控制器的参数调整往往是一个复杂且耗时的过程。为了优化PID控制器的参数,本文采用遗传算法(GA)进行自动调优,并模拟二阶系统的动力学,基于满意度等标准进行调优。

二、PID控制器的基本原理

PID控制器是一种线性控制器,它主要根据给定值和实际输出值构成控制偏差,然后利用偏差给出合理的控制量。PID控制器包含三个主要参数:比例(P)、积分(I)和微分(D)。

  1. 比例控制(P):通过对误差进行比例放大来控制输出值,使被控对象能够更快地接近设定值。
  2. 积分控制(I):对误差进行积分,用于消除系统静态误差。
  3. 微分控制(D):对误差进行微分,用于抑制系统瞬态过程。

PID控制器的输出值计算公式为:output = Kp * error + Ki * integral(error) + Kd * derivative(error),其中Kp、Ki和Kd分别为比例、积分和微分参数,error表示当前误差值,integral(error)表示误差的积分值,derivative(error)表示误差的微分值。

三、遗传算法的基本原理

遗传算法是一种模拟自然选择和遗传机制的优化算法,通过模拟生物进化过程中的选择、交叉和变异等操作,对解空间进行搜索,从而找到最优解或近似最优解。

在PID控制器参数调优中,遗传算法将PID控制器的参数(Kp、Ki、Kd)作为个体,通过选择、交叉和变异等操作,不断迭代搜索最优参数组合。

四、基于遗传算法的PID控制器增益实现

  1. 初始化种群:在解空间中随机生成一定数量的个体,作为初始种群。每个个体包含三个基因:Kp、Ki和Kd。
  2. 适应度评估:根据满意度等标准,对每个个体的适应度进行评估。适应度函数可以基于系统的输出误差、稳定性等指标进行设计。
  3. 选择操作:根据适应度评估结果,选择适应度较高的个体作为父代,用于生成下一代个体。
  4. 交叉操作:将父代个体进行交叉操作,生成新的子代个体。交叉操作可以采用单点交叉、双点交叉等方式。
  5. 变异操作:对子代个体进行变异操作,以增加解空间的多样性。变异操作可以采用随机变异、均匀变异等方式。
  6. 迭代搜索:重复执行选择、交叉和变异操作,不断迭代搜索最优参数组合。在迭代过程中,可以记录每一代的最优个体和适应度值,以便进行后续分析。
  7. 验证结果:将最优参数组合应用于无人机控制系统,进行实际效果验证。可以通过Simulink模型进行仿真实验,评估系统的输出误差、稳定性等指标。

五、结论

本文利用遗传算法对无人机上的PID控制器参数进行了自动调优。通过模拟二阶系统的动力学,并基于满意度等标准进行调优,成功找到了最优的PID参数组合。实验结果表明,优化后的PID控制器能够显著提高无人机的控制精度和稳定性。未来,可以进一步探索其他优化算法在PID控制器参数调优中的应用,以提高无人机控制系统的性能。

📚2 运行结果

 

部分代码:

clear all;
clc;

% Values of damping, natural frequency and SS gain
damping_ratio = (2:8)/10;
natural_freq = (3:10);
b0 = 1;

%variables used to selected different frequency/damping values
i = 1;  % natural frequency
j = 1;  % damping ratio

% Calculating the values of the nominator and denominator of the TF
a = b0*(natural_freq(i)^2);
b = 2*natural_freq(i)*damping_ratio(j);
c = natural_freq(i)^2;

k =1;

%Simulink model required
model = 'reference_tracking';
load_system(model)

max_prop_gain = 1;
max_int_gain = 1;
% kp_initial = rand*max_prop_gain;
% ki_initial = rand*max_int_gain;
 
kp_initial = 3;
ki_initial = 3;

%population creation
gains = [ kp_initial ki_initial;
    0.5*kp_initial ki_initial;
    kp_initial 0.5*ki_initial;
    0.5*kp_initial 0.5*ki_initial
    2*kp_initial 2*ki_initial];

disp(gains);
kp = kp_initial;
ki = ki_initial;

kp_p1 = num2str(kp);
ki_p2 = num2str(ki);
s_kp_p1 = strcat('Initial P Gain: ', kp_p1);
s_ki_p2  = strcat('Initial I Gain: ',ki_p2);
initial_gains = [s_kp_p1 char(10) s_ki_p2]; % textbox element

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]杨黎明. 一种改进的免疫遗传算法及在PID控制器优化设计中的应用[D].中南大学,2007.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值