【有限元正交配置法——CSTR】OCFE(使用插值多项式将一组常微分方程离散化为线性方程组的方法)用于CSTR的动态数据协调

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、文档


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

OCFE是一种使用插值多项式将一组常微分方程离散化为线性方程组的方法(Liebman等人,1992)。在本提交中,OCFE是使用参考文献[1]中的CSTR示例进行的。

参考文献[1]:

使用非线性规划技术对动态过程进行高效的数据协调和估计 

📚2 运行结果

文档:

部分代码:

%% Plot results
    subplot(211);  % Concentration profile
    plot(0:length(t)-1,y(:,1),'b'); hold on;
    plot(0:length(t)-1,A,'r');
    
    title('Concentration Profile'); 
    scatter(0:3:length(t)-1,y(1:3:end,1),20,'b');
    scatter(0:5:length(t)-1,A(1:5:end),20,'r');
    xlabel('Time Step'); ylabel('Scaled Conc.');
    axis([0 100 0 0.4]);
    legend('Output from ode15s','Output from OCFE');

    subplot(212); % Temperature profile
    plot(0:length(t)-1,y(:,2),'b'); hold on;
    plot(0:length(t)-1,T,'r');
    
    title('Temperature Profile');
    scatter(0:3:length(t)-1,y(1:3:end,2),20,'b');
    scatter(0:5:length(t)-1,T(1:5:end),20,'r');
    xlabel('Time Step'); ylabel('Scaled Temp.');
    axis([0 100 4.4 4.9]);
    legend('Output from ode15s','Output from OCFE');
    
    %% Auxiliary functions
    function F = func(x,c) % Linear system of equations

 function F = fA(A0,A,T) % CSTR function 1 for OCFE
        F = 2.5*(0.01*(A0 - A) - (7.86E12)...
            *A*exp(-140.9/T));
    end

    function F = fT(T0,A,T) % CSTR function 2 for OCFE
        F = 2.5*(0.01*(T0 - T) + (2.1222E12)...
            *A*exp(-140.9/T) - 0.005*T + 0.017);
    end

    function F = dydx(t,y) % CSTR functions but for ode15s
        F = zeros(2,1);
        if t >= 150, A0t = 5.5;

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1] Liebman et al. (1992). Efficient Data Reconciliation and Estimation for Dynamic Processes Using Nonlinear Programming Techniques. Comput. Chem. Eng., 16(10), 963-986.

🌈Matlab代码、文档

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值