💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
参考文献:

摘要
在信息技术时代,日常生活需要在用户之间传输数以百万计的图像。保护这些图像至关重要。数字图像加密是一种用于保护图像内容的众所周知的技术。在图像加密技术中,数字图像使用密钥转换为噪声图像,其中将它们恢复为原始图像需要相同的密钥。大多数图像加密技术依赖于两个步骤:混淆和扩散。在这项工作中,提出了一种使用超混沌系统和斐波那契Q矩阵进行图像加密的新算法。在该算法中,原始图像被六维超混沌系统随机生成的数字混淆。然后,使用斐波那契Q矩阵对置换图像进行扩散。所提出的图像加密算法使用噪声和数据切割攻击、直方图、密钥空间和敏感性进行了测试。此外,与几种现有的使用熵、相关系数和抗攻击鲁棒性的算法相比,所提出的算法的性能得到了提升。所提出的算法达到了出色的安全级别,并且优于现有的图像加密算法。
关键词:图像加密;超混沌系统;斐波那契Q矩阵;攻击
📚2 运行结果

图片可任意换。

部分代码:
function [I_enc,SS]=Encrypt(I,rounds)
if nargin<1
error('You must enter at least the image')
elseif nargin<2
rounds=2;
warning('Rounds not found, we will use 2 rounds')
end
rounds=ceil(rounds);
if rounds<1
error('Rounds is less than 1')
end
[M,N]=size(I);
% To Make Sure That image size is even
if mod(M,2)==1
I(M+1,:)=uint8(0);
M=M+1;
end
if mod(N,2)==1
I(:,N+1)=uint8(0);
N=N+1;
end
MN=M*N;
for round_iter=1:rounds
% #2
P=double(I(:));
% #3
x=(sum(P)+MN)/(MN+(2^23));
for i=2:6
x(i)=mod(x(i-1)*1e6,1);
end
% #sys 1
a=10;b=8/3;c=28;d=-1;e=8;r=3;
L=@(t,x)[a*(x(2)-x(1))+x(4)-x(5)-x(6)
c*x(1)-x(2)-x(1)*x(3)
-b*x(3)+x(1)*x(2)
d*x(4)-x(2)*x(3)
e*x(6)+x(3)*x(2)
r*x(1)];
N0=.9865*MN/3;
MN3=ceil(MN/3);
[T,Y]=ode45(L,[N0 MN3],x);
% #4
L=Y(1:MN3,1:2:5);
L=L(:);L=L(1:MN);
% #5
[L2,S]=sort(L);
SS{round_iter}=S;
% #6
R=P(S);
% #7
R_=reshape(R,[M N]);
A=[89 55;55 34];
for i=1:2:M
for j=1:2:N
Cx=[R_(i,j) R_(i,j+1)
R_(i+1,j) R_(i+1,j+1)];
fz=Cx*A;
C(i,j)=fz(1,1);
C(i,j+1)=fz(1,2);
C(i+1,j)=fz(2,1);
C(i+1,j+1)=fz(2,2);
end
end
I=mod(C,256);
P=I(:);
end
I_enc=uint8(I);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取


被折叠的 条评论
为什么被折叠?



