💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️空间变量协同估计方法研究
在数理统计中,简单抽样通常假设抽样点来自同一群体的个体是相互独立的。与数学相反统计,空间统计假设空间变量的采样点是依赖性强,价值观呈现一定趋势。因此,空间值变量及其趋势可用于估计其在未采样位置的值。这个空间估计的最常见方法是克里金算法。在实际工程中,可以使用以下方法测量相同的空间变量不同的方法。虽然这些方法测量的是相同的物理量测量原理的差异导致测量结果存在差异价值观。然而,这些值仍然表现出显著的空间相关性。此外,一些空间变量可能具有不同的物理意义,但表现出一定的相关性及相似性。这些空间相关变量可以具有相同或不同的测量单位。一些空间变量成本高昂且难以衡量。尽管他们很高在实际工作中,由于精度问题,只能获得有限数量的样本另一方面,一些空间变量易于测量且成本低廉,导致在大面积上广泛取样。在工程研究中,当研究空间变化模式时对于采样不足的变量,研究人员通常会参考其他空间变量这些变量与目标变量密切相关,并使用协作估计。在地质和采矿研究中,解决此类问题的主要方法是共克里格法。虽然联合克里金算法在理论上很容易理解,但由于计算交叉协方差或相关协方差存在挑战,因此实施起来很困难空间变量之间的交叉变差函数,使得应用变得困难该算法在实践中。随着人工智能和机器学习方法的发展,这些技术已经成功应用于许多行业。问题是提供了两个数据集,附件1和附件2,其中包含对同一区域的四个空间属性进行测量,目标变量具有较高的测量成本。问题要求参与者进行研究协同估算空间属性数据的适当方法
问题1:使用附件1中的数据研究其中一个变量的变化模式空间变量(F1_目标变量)。1随机均匀地对目标变量进行重采样,并估计使用重新采样值计算未采样位置的空间变量值。展示结果以等高线图的形式显示。2改变样本量并探索样本量与估计误差。问题2:研究目标变量与协作之间的相关性使用附件1中的数据来计算变量。选择两个协作变量作为估计目标变量的协作变量。问题3:使用附件1中的数据和问题2中的发现,选择一两个协作变量,研究空间变量的变化模式变量(F1_目标变量)。1随机均匀地对目标和协作变量进行重采样,并使用重采样值估计未采样位置的空间变量值价值观。将结果以等高线图的形式呈现。2改变样本大小,探索样本大小与估计误差。3选择至少两种方法并比较它们。问题4:附件2中的目标变量(F2_target变量)采样数据不足。从问题3中选择最佳方法,以估计趋势目标变量,并将结果呈现为等高线图。全部题目和数据下载见第3部分。
💥1 找程序网站推荐
做到有所了解:
1)模型/函数的输入是什么
2)结果/输出是什么
3)实现的是什么功能
前面两步是找到程序跑通代码,会把输入和一些参数修改运行即可,推荐找程序的网站:
·联合开发网: http://www.pudn.com/
. CSDN专业开发者社区:https://www.csdn.net/
·当码网: http://www.downma.com/
·MATALAB中文论坛:https://www.ilovematlab.cn/
电子发烧会论坛: https://bbs.elecfans.com/jishu_286991_1_1.html
📚2 公式编辑器、流程图、论文排版
比赛时候,博主公式基本不用一个个输入,这里把绝妙分享出来,与卿共勉:
| 公式编辑器 |
| VISIO绘制流程图 |
| 论文排版 |
| 利用Word绘制三线表 |
| LaTeX基本表格绘制 |
🎉3 24年数维杯B题及资源下载
通过网盘分享的文件:2024_“ShuWei Cup”B_Problem
链接: https://pan.baidu.com/s/1LqCO9lmICFg6yYkt0s05eg
提取码: zffe
--来自百度网盘超级会员v6的分享
🌈4 思路、代码分享......
后台回复:数维杯

被折叠的 条评论
为什么被折叠?



