支持向量机SVM是一类监督学习方式对数据进行二元分类的广义线性分类器。
数据集及数据预处理
#创建一个异或数据集
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(1)
X_xor = np.random.randn(200, 2)
y_xor = np.logical_xor(X_xor[:, 0] > 0,X_xor[:, 1] > 0)
y_xor = np.where(y_xor, 1, -1)
plt.scatter(X_xor[y_xor == 1, 0],X_xor[y_xor == 1, 1],c='b', marker='x',label='1')
plt.scatter(X_xor[y_xor == -1, 0],X_xor[y_xor == -1, 1],c='r',marker='s', label='-1')
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.legend(loc='best')
plt.tight_layout()
plt.show()
构建SVM分类器
#划分决策树区域
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap
def plot_decision_regions(x,y,model,resolution=0.02):
markers = ('s','x','o','^','v')
colors = ('red','blue','lightgreen','gray','cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
x1_min,x1_max = x[:,0].min() - 1,x[:,0].max() + 1
x2_min,x2_max = x[:,1].min() - 1,x[:,1].max() + 1
xx1,xx2 = np.meshgrid(np.arange(x1_min,x1_max,resolution),
np.arange(x2_min,x2_max,resolution))
z = model.predict(np.array([xx1.ravel(),xx2.ravel()]).T)
z = z.reshape(xx1.shape)
plt.contourf(xx1,xx2,z,alpha=0.4,cmap=cmap)
plt.xlim(xx1.min(),xx1.max())
plt.ylim(xx2.min(),xx2.max())
for idx,cl in enumerate(np.unique(y)):
plt.scatter(x=x[y == cl,0],y=x[y == cl,1],
alpha=0.8,c=cmap(idx),
marker=markers[idx],label=cl)
plt.xlabel("x1")
plt.ylabel("x2")
plt.show()
求出异或数据集的决策边界
from sklearn.svm import SVC
if __name__ == "__main__":
x_xor = np.random.randn(200,2)
#将数据集变成一个异或的数据集
y_xor = np.logical_xor(x_xor[:,0] > 0,x_xor[:,1] > 0)
y_xor = np.where(y_xor,1,-1)
svm = SVC(kernel="rbf", random_state=0, gamma=0.1, C=1.0)
svm.fit(x_xor, y_xor)
plot_decision_regions(x_xor, y_xor, svm)