自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 协方差矩阵和热力图

协方差矩阵(Covariance Matrix)是一个方阵,用于描述多维数据中不同维度(或变量)之间的线性关系。协方差本质上衡量的是两个变量之间的关系和变化趋势。如果两个变量的协方差为正,意味着它们通常会一起增加或减少;如果协方差为负,说明一个变量增加时,另一个变量可能会减少;协方差接近零表示两个变量之间没有线性关系。对于一个多维数据集,其中每个维度(特征)都是一个随机变量,协方差矩阵可以帮助我们理解这些变量之间的关系。协方差矩阵是对称的,且对角线上的元素表示每个变量的方差。

2024-12-09 20:47:36 1344

原创 使用不同 CNN 模型预测叶片病害,

在现代农业生产中,植物病害的准确检测与识别对于保障作物产量和质量至关重要。传统的病害检测方法依赖于人工观察和专业知识,这不仅耗时费力,而且准确度有限。随着深度学习技术的发展,特别是卷积神经网络(CNN)在图像识别领域的突破,我们迎来了一种新的、高效的病害检测手段。CNN模型能够通过学习图像中的特征自动进行病害识别,这一技术在农业领域的应用正逐渐改变传统的病害管理方式。例如,基于大数据的葡萄叶片霜霉病预报系统就是利用深度学习技术在检测和预防病害方面的一个成功案例。

2024-10-20 12:14:20 1638

原创 基于卷积神经网络的人脸识别分类检测

图像识别在计算机视觉领域扮演着至关重要的角色,其准确性和鲁棒性对多个应用至关 重要。随着深度学习技术的不断发展,卷积神经网络(CNN)已经成为图像识别领域的重要 技术支柱。CNN 以其优秀的特征提取能力,在图像分类、目标检测和图像分割等任务中展现 出卓越性能。从 LeCun 等人在 1998 年提出的 LeNet-5 模型开始,CNN 在图像识别领域取得 了里程碑式的进展,随后的 AlexNet、VGG、ResNet 等模型更加推动了 CNN 在图像识别任务 中的广泛应用。

2024-10-19 22:11:46 1976

原创 PIL模块

PIL(Python Imaging Library)是一个强大的Python图像处理库,它提供了广泛的文件格式支持、高效的内部表示和强大的图像处理能力。PIL的主要功能包括图像归档、图像展示和图像处理。它能够处理几乎所有图片格式,完成对图像的缩放、剪裁、叠加以及向图像添加线条、图像和文字等操作。Pillow是PIL的一个活跃的分支,它不仅支持Python 3,还不断更新和维护,因此通常推荐使用Pillow而不是原始的PIL。

2024-09-21 11:55:02 1379 1

原创 SciPy模快有关操作

scipy是一个开源的Python 库,用于科学和技术计算。它建立在numpy库的基础上,提供了许多用于优化、线性代数、积分、插值、特殊函数、块数据操作、快速傅里叶变换、信号处理和图像处理等任务的模块。"scipy" 是一个基于 'numpy' 的 Python 库,专为科学计算设计,提供了广泛的模块和函数,包括优化、线性代数、插值、积分、特殊函数、快速傅里叶变换、信号处理、图像处理、稀疏矩阵和统计分析等。

2024-09-21 10:50:09 630 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除