13. AVL树【C++实现】

AVL树的概念

  • AVL树(英语:AVL tree)是计算机科学中最早被发明的自平衡二叉查找树。在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下的时间复杂度都是 𝑂(log𝑛)。增加和删除元素的操作则可能需要借由一次或多次树旋转,以实现树的重新平衡。AVL树得名于它的发明者格奥尔吉·阿杰尔松-韦利斯基和叶夫根尼·兰迪斯,他们在1962年的论文《An algorithm for the organization of information》中公开了这一数据结构。

  • 节点的平衡因子是它的左子树的高度减去它的右子树的高度(有时相反)。带有平衡因子1、0或 -1的节点被认为是平衡的。带有平衡因子 -2或2的节点被认为是不平衡的,并需要重新平衡这个树。平衡因子可以直接存储在每个节点中,或从可能存储在节点中的子树高度计算出来。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

如:

  • 平衡因子 = 右子树-左子树

非AVL树:
在这里插入图片描述

  • 在平衡之后:

在这里插入图片描述

在这里插入图片描述

  • 如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
    O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。

AVL树节点的定义

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parnet;
	pair<K, V> _kv;

	int _bf; // balance factor

	AVLTreeNode(const pair<K, V> kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parnet(nullptr)
		, kv(kv)
		_bf(0)
	{}
};

AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子
    • 插入到父亲的左边,父亲平衡因子--
    • 插入到父亲的右边,父亲平衡因子++
    • 父亲 bf 平衡因子 == 0,父亲所在子树高度不变,不用继续往上更新,插入结束
    • 父亲 bf 平衡因子 == 1 或者 -1,父亲所在子树高度变了,必须往上更新
    • 父亲 bf 更新后 == 2 或者 -2 ,父亲所在的子树已经不平衡,需要旋转处理
  • 更新后不可能出现其他值,插入之前树是AVL树,平衡因子要么是1,-1,0,++,-\-
bool Insert(const pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		return true;
	}
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}

	// 插入节点
	cur = new Node(kv);
	if (parent->_kv.first < kv.first)
		parent->_right = cur;
	else
		parent->_left = cur;
	cur->_parnet = parent;
	
	// 更新平衡因子
	while (parent)
	{
		if (cur == parent->_left)
			parent->_bf--;
		else
			parent->_bf++;
	
		if (parent->_bf == 0) // 更新结束
			break;
		else if (parent->_bf == 1 || parent->_bf == -1)
		{
			// 继续更新
			cur = parent;
			parent = parent->_parnet;
		}
		else if (parent->_bf == -2 || parent->_bf == 2)
		{
			// 需要旋转
			// ...
			break;
		}
		else
		{
			assert(false);
		}
	}

	return true;
}

AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
    • 当pSubR的平衡因子为1时,执行左单旋
    • 当pSubR的平衡因子为-1时,执行右左双旋
  2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
    • 当pSubL的平衡因子为-1是,执行右单旋
    • 当pSubL的平衡因子为1时,执行左右双旋

在这里插入图片描述

  • 旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。
新节点插入较高右子树的右侧—右右:左单旋

在这里插入图片描述

左单旋的步骤如下:

  1. 让subR的左子树作为parent的右子树。
  2. 让parent作为subR的左子树。
  3. 让subR作为整个子树的根。
  4. 更新平衡因子。

在这里插入图片描述

//左单旋
void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	Node* parentParent = parent->_parent;

	//1、建立subR和parent之间的关系
	parent->_parent = subR;
	subR->_left = parent;

	//2、建立parent和subRL之间的关系
	parent->_right = subRL;
	if (subRL)
		subRL->_parent = parent;

	//3、建立parentParent和subR之间的关系
	if (parentParent == nullptr)
	{
		_root = subR;
		subR->_parent = nullptr; //subR的_parent指向需改变
	}
	else
	{
		if (parent == parentParent->_left)
		{
			parentParent->_left = subR;
		}
		else //parent == parentParent->_right
		{
			parentParent->_right = subR;
		}
		subR->_parent = parentParent;
	}

	//4、更新平衡因子
	subR->_bf = parent->_bf = 0;
}
新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述

  • 上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
    子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树
  • 如果是根节点,旋转完成后,要更新根节点
  • 如果是子树,可能是某个节点的左子树,也可能是右子树
    在这里插入图片描述

右单旋的步骤如下:

  1. 让subL的右子树作为parent的左子树。
  2. 让parent作为subL的右子树。
  3. 让subL作为整个子树的根。
  4. 更新平衡因子。
// 右单旋
void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	Node* parentParent = parent->_parent;

	//1、建立subL和parent之间的关系
	subL->_right = parent;
	parent->_parent = subL;

	//2、建立parent和subLR之间的关系
	parent->_left = subLR;
	if (subLR)
		subLR->_parent = parent;

	//3、建立parentParent和subL之间的关系
	if (parentParent == nullptr)
	{
		_root = subL;
		_root->_parent = nullptr;
	}
	else
	{
		if (parent == parentParent->_left)
		{
			parentParent->_left = subL;
		}
		else //parent == parentParent->_right
		{
			parentParent->_right = subL;
		}
		subL->_parent = parentParent;
	}

	//4、更新平衡因子
	subL->_bf = parent->_bf = 0;
}
新节点插入较高左子树的右侧—左右:先左单旋再右单旋

在这里插入图片描述

  • 将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

左右双旋的步骤如下:

  1. 以subL为旋转点进行左单旋。
  2. 以parent为旋转点进行右单旋。
  3. 更新平衡因子。
//左右双旋
void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	int bf = subLR->_bf; //subLR不可能为nullptr,因为subL的平衡因子是1

	//1、以subL为旋转点进行左单旋
	RotateL(subL);

	//2、以parent为旋转点进行右单旋
	RotateR(parent);

	//3、更新平衡因子
	if (bf == 1)
	{
		subLR->_bf = 0;
		subL->_bf = -1;
		parent->_bf = 0;
	}
	else if (bf == -1)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 1;
	}
	else if (bf == 0)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 0;
	}
	else
	{
		assert(false); //在旋转前树的平衡因子就有问题
	}
}
新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述

右左双旋的步骤如下:

  1. 以subR为旋转点进行右单旋。
  2. 以parent为旋转点进行左单旋。
  3. 更新平衡因子。
//右左双旋
void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	int bf = subRL->_bf;

	//1、以subR为轴进行右单旋
	RotateR(subR);

	//2、以parent为轴进行左单旋
	RotateL(parent);

	//3、更新平衡因子
	if (bf == 1)
	{
		subRL->_bf = 0;
		parent->_bf = -1;
		subR->_bf = 0;
	}
	else if (bf == -1)
	{
		subRL->_bf = 0;
		parent->_bf = 0;
		subR->_bf = 1;
	}
	else if (bf == 0)
	{
		subRL->_bf = 0;
		parent->_bf = 0;
		subR->_bf = 0;
	}
	else
	{
		assert(false); //在旋转前树的平衡因子就有问题
	}
}

AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树如果中序遍历可得到一个有序的序列,就说明为二叉搜索树。
  2. 验证其为平衡树每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)节点的平衡因子是否计算正确。
//判断是否为AVL树
bool IsAVLTree()
{
	int hight = 0; //输出型参数
	return _IsBalanced(_root, hight);
}
//检测二叉树是否平衡
bool _IsBalanced(Node* root, int& hight)
{
	if (root == nullptr) //空树是平衡二叉树
	{
		hight = 0; //空树的高度为0
		return true;
	}
	//先判断左子树
	int leftHight = 0;
	if (_IsBalanced(root->_left, leftHight) == false)
		return false;
	//再判断右子树
	int rightHight = 0;
	if (_IsBalanced(root->_right, rightHight) == false)
		return false;
	//检查该结点的平衡因子
	if (rightHight - leftHight != root->_bf)
	{
		cout << "平衡因子设置异常:" << root->_kv.first << endl;
	}
	//把左右子树的高度中的较大值+1作为当前树的高度返回给上一层
	hight = max(leftHight, rightHight) + 1;
	return abs(rightHight - leftHight) < 2; //平衡二叉树的条件
}

AVL树的查找

AVL树的查找函数与二叉搜索树的查找方式一模一样,逻辑如下:

  1. 若树为空树,则查找失败,返回nullptr。
  2. 若key值小于当前结点的值,则应该在该结点的左子树当中进行查找。
  3. 若key值大于当前结点的值,则应该在该结点的右子树当中进行查找。
  4. 若key值等于当前结点的值,则查找成功,返回对应结点。
//查找函数
Node* Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (key < cur->_kv.first) //key值小于该结点的值
		{
			cur = cur->_left; //在该结点的左子树当中查找
		}
		else if (key > cur->_kv.first) //key值大于该结点的值
		{
			cur = cur->_right; //在该结点的右子树当中查找
		}
		else //找到了目标结点
		{
			return cur; //返回该结点
		}
	}
	return nullptr; //查找失败
}

AVL树的修改

修改函数一
//修改函数
bool Modify(const K& key, const V& value)
{
	Node* ret = Find(key);
	if (ret == nullptr) //未找到指定key值的结点
	{
		return false;
	}
	ret->_kv.second = value; //修改结点的value
	return true;
}
修改函数二
  • 若待插入结点的键值key在map当中不存在,则结点插入成功,并返回插入后结点的指针和true。
  • 若待插入结点的键值key在map当中已经存在,则结点插入失败,并返回map当中键值为key的结点的指针和false。
//插入函数
pair<Node*, bool> Insert(const pair<K, V>& kv)
{
	if (_root == nullptr) //若AVL树为空树,则插入结点直接作为根结点
	{
		_root = new Node(kv);
		return make_pair(_root, true); //插入成功,返回新插入结点和true
	}
	//1、按照二叉搜索树的插入方法,找到待插入位置
	Node* cur = _root;
	Node* parent = nullptr;
	while (cur)
	{
		if (kv.first < cur->_kv.first) //待插入结点的key值小于当前结点的key值
		{
			//往该结点的左子树走
			parent = cur;
			cur = cur->_left;
		}
		else if (kv.first > cur->_kv.first) //待插入结点的key值大于当前结点的key值
		{
			//往该结点的右子树走
			parent = cur;
			cur = cur->_right;
		}
		else //待插入结点的key值等于当前结点的key值
		{
			//插入失败(不允许key值冗余)
			return make_pair(cur, false); //插入失败,返回已经存在的结点和false
		}
	}

	//2、将待插入结点插入到树中
	cur = new Node(kv); //根据所给值构造一个新结点
	Node* newnode = cur; //记录新插入的结点
	if (kv.first < parent->_kv.first) //新结点的key值小于parent的key值
	{
		//插入到parent的左边
		parent->_left = cur;
		cur->_parent = parent;
	}
	else //新结点的key值大于parent的key值
	{
		//插入到parent的右边
		parent->_right = cur;
		cur->_parent = parent;
	}

	//3、更新平衡因子,如果出现不平衡,则需要进行旋转
	while (cur != _root) //最坏一路更新到根结点
	{
		if (cur == parent->_left) //parent的左子树增高
		{
			parent->_bf--; //parent的平衡因子--
		}
		else if (cur == parent->_right) //parent的右子树增高
		{
			parent->_bf++; //parent的平衡因子++
		}
		//判断是否更新结束或需要进行旋转
		if (parent->_bf == 0) //更新结束(新增结点把parent左右子树矮的那一边增高了,此时左右高度一致)
		{
			break; //parent树的高度没有发生变化,不会影响其父结点及以上结点的平衡因子
		}
		else if (parent->_bf == -1 || parent->_bf == 1) //需要继续往上更新平衡因子
		{
			//parent树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子
			cur = parent;
			parent = parent->_parent;
		}
		else if (parent->_bf == -2 || parent->_bf == 2) //需要进行旋转(此时parent树已经不平衡了)
		{
			if (parent->_bf == -2)
			{
				if (cur->_bf == -1)
				{
					RotateR(parent); //右单旋
				}
				else //cur->_bf == 1
				{
					RotateLR(parent); //左右双旋
				}
			}
			else //parent->_bf == 2
			{
				if (cur->_bf == -1)
				{
					RotateRL(parent); //右左双旋
				}
				else //cur->_bf == 1
				{
					RotateL(parent); //左单旋
				}
			}
			break; //旋转后就一定平衡了,无需继续往上更新平衡因子(旋转后树高度变为插入之前了)
		}
		else
		{
			assert(false); //在插入前树的平衡因子就有问题
		}
	}

	return make_pair(newnode, true); //插入成功,返回新插入结点和true
}
重载[ ]
  1. 调用插入函数插入键值对。
  2. 拿出从插入函数获取到的结点。
  3. 返回该结点value的引用。
  • 如果key不在树中,则先插入键值对<key, V()>,然后返回该键值对中value的引用。
  • 如果key已经在树中,则返回键值为key结点value的引用。
//operator[]重载
V& operator[](const K& key)
{
	//调用插入函数插入键值对
	pair<Node*, bool> ret = Insert(make_pair(key, V()));
	//拿出从插入函数获取到的结点
	Node* node = ret.first;
	//返回该结点value的引用
	return node->_kv.second;
}

AVL树的删除

删除方法和二叉搜索树相同

  1. 先找到待删除的结点。
  2. 若找到的待删除结点的左右子树均不为空,则需要使用替换法进行删除。
//删除函数
bool Erase(const K& key)
{
	//用于遍历二叉树
	Node* parent = nullptr;
	Node* cur = _root;
	//用于标记实际的删除结点及其父结点
	Node* delParentPos = nullptr;
	Node* delPos = nullptr;
	while (cur)
	{
		if (key < cur->_kv.first) //所给key值小于当前结点的key值
		{
			//往该结点的左子树走
			parent = cur;
			cur = cur->_left;
		}
		else if (key > cur->_kv.first) //所给key值大于当前结点的key值
		{
			//往该结点的右子树走
			parent = cur;
			cur = cur->_right;
		}
		else //找到了待删除结点
		{
			if (cur->_left == nullptr) //待删除结点的左子树为空
			{
				if (cur == _root) //待删除结点是根结点
				{
					_root = _root->_right; //让根结点的右子树作为新的根结点
					if (_root)
						_root->_parent = nullptr;
					delete cur; //删除原根结点
					return true; //根结点无祖先结点,无需进行平衡因子的更新操作
				}
				else
				{
					delParentPos = parent; //标记实际删除结点的父结点
					delPos = cur; //标记实际删除的结点
				}
				break; //删除结点有祖先结点,需更新平衡因子
			}
			else if (cur->_right == nullptr) //待删除结点的右子树为空
			{
				if (cur == _root) //待删除结点是根结点
				{
					_root = _root->_left; //让根结点的左子树作为新的根结点
					if (_root)
						_root->_parent = nullptr;
					delete cur; //删除原根结点
					return true; //根结点无祖先结点,无需进行平衡因子的更新操作
				}
				else
				{
					delParentPos = parent; //标记实际删除结点的父结点
					delPos = cur; //标记实际删除的结点
				}
				break; //删除结点有祖先结点,需更新平衡因子
			}
			else //待删除结点的左右子树均不为空
			{
				//替换法删除
				//寻找待删除结点右子树当中key值最小的结点作为实际删除结点
				Node* minParent = cur;
				Node* minRight = cur->_right;
				while (minRight->_left)
				{
					minParent = minRight;
					minRight = minRight->_left;
				}
				cur->_kv.first = minRight->_kv.first; //将待删除结点的key改为minRight的key
				cur->_kv.second = minRight->_kv.second; //将待删除结点的value改为minRight的value
				delParentPos = minParent; //标记实际删除结点的父结点
				delPos = minRight; //标记实际删除的结点
				break; //删除结点有祖先结点,需更新平衡因子
			}
		}
	}
	if (delParentPos == nullptr) //delParentPos没有被修改过,说明没有找到待删除结点
	{
		return false;
	}

	//记录待删除结点及其父结点(用于后续实际删除)
	Node* del = delPos;
	Node* delP = delParentPos;

	//更新平衡因子
	while (delPos != _root) //最坏一路更新到根结点
	{
		if (delPos == delParentPos->_left) //delParentPos的左子树高度降低
		{
			delParentPos->_bf++; //delParentPos的平衡因子++
		}
		else if (delPos == delParentPos->_right) //delParentPos的右子树高度降低
		{
			delParentPos->_bf--; //delParentPos的平衡因子--
		}
		//判断是否更新结束或需要进行旋转
		if (delParentPos->_bf == 0)//需要继续往上更新平衡因子
		{
			//delParentPos树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子
			delPos = delParentPos;
			delParentPos = delParentPos->_parent;
		}
		else if (delParentPos->_bf == -1 || delParentPos->_bf == 1) //更新结束
		{
			break; //delParent树的高度没有发生变化,不会影响其父结点及以上结点的平衡因子
		}
		else if (delParentPos->_bf == -2 || delParentPos->_bf == 2) //需要进行旋转(此时delParentPos树已经不平衡了)
		{
			if (delParentPos->_bf == -2)
			{
				if (delParentPos->_left->_bf == -1)
				{
					Node* tmp = delParentPos->_left; //记录delParentPos右旋转后新的根结点
					RotateR(delParentPos); //右单旋
					delParentPos = tmp; //更新根结点
				}
				else if(delParentPos->_left->_bf == 1)
				{
					Node* tmp = delParentPos->_left->_right; //记录delParentPos左右旋转后新的根结点
					RotateLR(delParentPos); //左右双旋
					delParentPos = tmp; //更新根结点
				}
				else //delParentPos->_left->_bf == 0
				{
					Node* tmp = delParentPos->_left; //记录delParentPos右旋转后新的根结点
					RotateR(delParentPos); //右单旋
					delParentPos = tmp; //更新根结点
					//平衡因子调整
					delParentPos->_bf = 1;
					delParentPos->_right->_bf = -1;
					break; //更正
				}
			}
			else //delParentPos->_bf == 2
			{
				if (delParentPos->_right->_bf == -1)
				{
					Node* tmp = delParentPos->_right->_left; //记录delParentPos右左旋转后新的根结点
					RotateRL(delParentPos); //右左双旋
					delParentPos = tmp; //更新根结点
				}
				else if(delParentPos->_right->_bf == 1)
				{
					Node* tmp = delParentPos->_right; //记录delParentPos左旋转后新的根结点
					RotateL(delParentPos); //左单旋
					delParentPos = tmp; //更新根结点
				}
				else //delParentPos->_right->_bf == 0
				{
					Node* tmp = delParentPos->_right; //记录delParentPos左旋转后新的根结点
					RotateL(delParentPos); //左单旋
					delParentPos = tmp; //更新根结点
					//平衡因子调整
					delParentPos->_bf = -1;
					delParentPos->_left->_bf = 1;
					break; //更正
				}
			}
			//delParentPos树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子
			delPos = delParentPos;
			delParentPos = delParentPos->_parent;
			//break; //error
		}
		else
		{
			assert(false); //在删除前树的平衡因子就有问题
		}
	}
	//进行实际删除
	if (del->_left == nullptr) //实际删除结点的左子树为空
	{
		if (del == delP->_left) //实际删除结点是其父结点的左孩子
		{
			delP->_left = del->_right;
			if (del->_right)
				del->_right->_parent = delP;
		}
		else //实际删除结点是其父结点的右孩子
		{
			delP->_right = del->_right;
			if (del->_right)
				del->_right->_parent = delP;
		}
	}
	else //实际删除结点的右子树为空
	{
		if (del == delP->_left) //实际删除结点是其父结点的左孩子
		{
			delP->_left = del->_left;
			if (del->_left)
				del->_left->_parent = delP;
		}
		else //实际删除结点是其父结点的右孩子
		{
			delP->_right = del->_left;
			if (del->_left)
				del->_left->_parent = delP;
		}
	}
	delete del; //实际删除结点
	return true;
}

AVL树的性能

  • AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小林子AND

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值