1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。
2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。
2.涨点效果:RCS-OSA模块更加轻量化,有效提升检测速度!

凭借速度和精度之间的良好平衡,前沿的YOLO框架已成为最有效的目标检测算法之一。然而,使用YOLO网络在脑肿瘤检测中的性能研究很少。提出了一种新的基于信道Shuffle的重参数化卷积YOLO架构(RCS-YOLO)。我们提出了RCS和RCS的一次聚合(RCS- osa),将特征级联和计算效率联系起来,以提取更丰富的信息并减少时间消耗。在脑肿瘤数据集Br35H上的实验结果表明,该模型在速度和精度上均优于YOLOv6、YOLOv7和YOLOv8。值得注意的是,与YOLOv7相比,RCS-YOLO在每秒检测114.8张图像(FPS)的情况下,精度提高了2.6%,推理速度提高了60%。我们提出的RCS-YOLO在脑肿瘤检测任务上达到了最先进的性能
本文介绍了针对YOLOV8的改进,通过引入RCS-OSA模块,实现了在保持高精度的同时,显著提升了目标检测的速度。RCS-OSA模块结合RepVGG/RepConv ShuffleNet,减少了内存消耗,增强了语义信息提取。在脑肿瘤检测任务上,相较于YOLOv7,RCS-YOLO模型在FPS提升了60%,精度提高2.6%。
订阅专栏 解锁全文
6320

被折叠的 条评论
为什么被折叠?



