摘要: 在信息爆炸的时代,财经新闻数据是洞察市场动态、进行量化分析的重要来源。《经济观察报》作为国内主流的财经媒体,其文章数据具有极高的价值。本文将深入探讨如何运用Python生态中最前沿的技术组合——包括异步爬虫框架Scrapy、浏览器自动化工具Playwright、高性能HTML解析库Parsel,以及异步数据库操作——来构建一个健壮、高效、可扩展的《经济观察报》数据爬虫。我们将从爬虫的核心思想讲起,逐步拆解网站的反爬虫机制,并给出从页面请求、数据解析、异常处理到数据存储的完整代码实现,最终打造一个能够持续稳定运行的数据采集系统。
关键词: Python爬虫,Scrapy,Playwright,Asyncio,异步编程,反爬虫,数据解析,MongoDB,财经数据采集
一、 引言:为何选择现代Python技术栈?
传统的requests + BeautifulSoup爬虫组合对于简单的静态页面依然有效,但在面对如今大量依赖JavaScript动态渲染、并设有复杂反爬虫策略的现代网站时,往往力不从心。《经济观察报》的网站正是此类典型代表。
-
动态内容: 文章列表和内容可能通过Ajax或前端框架(如React, Vue)动态加载,单纯获取初始HTML无法拿到完整数据。
-
反爬虫机制: 包括但不限于IP封禁、User-Agent校验、请求频率限制、验证码等。
订阅专栏 解锁全文
828

被折叠的 条评论
为什么被折叠?



