- 博客(2479)
- 收藏
- 关注
原创 基于深度学习YOLOv11的玉米幼苗杂草检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一种基于深度学习YOLOv11的玉米幼苗与杂草检测系统,旨在通过计算机视觉技术精准识别农田中的玉米("corn")和杂草("weed")目标。系统采用YOLOv11算法作为核心检测模型,结合自建的YOLO格式数据集(包含训练集2661张、验证集254张和测试集127张图像),实现了高效的两分类目标检测。此外,系统集成用户友好的UI界面,支持登录注册功能,便于农户或农业技术人员操作使用。
2026-01-26 00:16:01
510
原创 基于深度学习YOLOv12的玉米幼苗杂草识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一种基于深度学习YOLOv12的玉米幼苗与杂草检测系统,针对农业场景中的精准除草需求,实现了高效的目标检测与分类。系统以YOLOv12为核心算法,构建了包含2类目标("weed"杂草和"cron"玉米幼苗)的数据集,其中训练集2661张、验证集254张、测试集127张,确保模型训练的可靠性和泛化能力。结合Python开发框架,系统集成用户友好的UI界面,支持登录注册功能,便于多用户管理与数据安全。项目提供完整的源码、预训练模型及数据集,为农业智能化除草提供了可落地的解决方案,具有较高的实用价
2026-01-26 00:15:27
388
原创 基于深度学习YOLOv11的草莓成熟度识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文构建了一套基于深度学习 YOLOv11 的草莓成熟度识别检测系统,针对草莓从生长到成熟的不同阶段,划分为 raw(未成熟)、turning(转色期)、ripe(成熟) 三个类别。系统采用包含 2939 张训练集与 774 张验证集的高质量标注数据集进行模型训练与验证,充分保证了检测的准确性与泛化能力。核心检测算法选用 YOLOv11,在速度与精度之间实现了较优平衡,并通过多尺度特征融合与数据增强提升对复杂背景、光照变化下草莓目标的识别鲁棒性。项目采用 Python 实现,集成了 可视化 UI 界面及 登
2026-01-26 00:14:55
1018
原创 基于深度学习YOLOv12的草莓成熟度检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目构建了一套基于深度学习 YOLOv12 的草莓成熟度识别检测系统,旨在实现对草莓在不同成熟阶段的高精度、实时检测与分类。系统采用 YOLO 格式数据集,将草莓分为 3 个类别:生(raw)、半熟(turning)及成熟(ripe),并使用 2939 张训练集与 774 张验证集图片进行模型训练与验证。模型在 YOLOv12 框架下结合多尺度特征提取与优化的锚框机制,实现了对不同大小、不同角度草莓的精准识别。
2026-01-26 00:14:25
600
原创 基于深度学习YOLOv11的铁轨轨道缺陷检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目旨在构建一套基于深度学习的铁轨轨道缺陷自动检测系统,利用YOLOv11目标检测算法对铁路轨道表面的缺陷进行实时识别与定位。数据集涵盖四类常见缺陷类型,分别为剥落(Spalling)、烧伤(Wheel Burn)、挤压变形(Squat)及波浪磨耗(Corrugation),共计训练集1916张、验证集240张、测试集240张。系统在数据预处理阶段采用图像增强与归一化方法,以提升模型的泛化能力。在模型训练过程中,结合YOLOv11的高效特征提取与多尺度预测机制,实现对不同尺寸缺陷的精确检测。为了便于实际应
2026-01-26 00:13:53
486
原创 基于深度学习YOLOv12的铁路轨道缺陷检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本研究设计并实现了一种基于深度学习的铁轨轨道缺陷检测系统,采用 YOLOv12 目标检测模型结合自主构建的轨道缺陷数据集进行训练与验证。数据集涵盖四类典型缺陷:剥落(Spalling)、烧蚀(Wheel Burn)、挤曲(Squat)和波磨(Corrugation),共包含 1916 张训练图像、240 张验证图像及 240 张测试图像。模型在训练过程中引入多尺度特征融合与改进的特征金字塔网络,以提升小目标和长条形缺陷的检测精度。系统配备了可视化 UI 界面与登录注册功能,支持实时检测与历史记录查询。实验结
2026-01-26 00:13:23
386
原创 基于深度学习YOLOv11的茶叶病害检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
茶叶作为全球重要的经济作物之一,其产量与品质直接关系到茶产业的经济效益。然而,茶园在生长过程中易受到多种病害侵袭,如茶叶黑腐病、茶叶褐枯病、茶叶叶锈病、红蜘蛛危害、茶蚊危害、茶叶白斑病等。这些病害若不能及时发现并防治,将严重影响茶叶的产量与品质。为实现茶叶病害的高效、准确识别,本文基于最新的 YOLOv11 深度学习目标检测算法,构建了一个集 病害检测模型、可视化UI界面及用户登录注册功能 于一体的茶叶病害检测系统。
2026-01-26 00:12:52
847
原创 基于深度学习YOLOv12的茶叶病害检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本项目基于深度学习目标检测算法YOLOv12,构建了一套高效准确的茶叶病害检测系统。系统涵盖8类茶叶病害,包括“Black rot of tea”、“Brown blight of tea”、“Leaf rust of tea”等,利用4736张训练集图像、273张验证集图像及406张测试集图像进行模型训练与评估。通过结合YOLOv12的高性能特性,系统实现了对茶叶病害的实时检测和分类,有效提升了茶园病害管理的自动化水平。项目同时设计了用户友好的UI界面和登录注册模块,方便不同用户的操作和管理。该系统可为茶
2026-01-26 00:09:55
634
原创 基于深度学习YOLOv11的钢材缺陷检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一套基于深度学习的钢材缺陷检测系统,采用先进的YOLOv11目标检测模型进行多类别缺陷识别。系统针对钢材表面常见的六类缺陷——包括“Bad Welding”、“Crack”、“Excess Reinforcement”、“Good Welding”、“Porosity”和“Spatters”——构建了专门的数据集,训练集包含3037张图像,验证集422张,测试集205张。通过高效的模型训练与优化,系统能够实现实时、准确的缺陷检测,为钢材质量控制提供自动化解决方案。此外,系统集成了用户友好的U
2026-01-26 00:06:38
394
原创 基于深度学习YOLOv12的钢材焊接缺陷检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
随着工业制造对钢材质量要求的不断提升,钢材缺陷的自动化检测成为保证产品质量和生产效率的重要环节。本文基于最新的深度学习目标检测算法YOLOv12,构建了一套高效的钢材缺陷检测系统。系统涵盖六类典型缺陷:Bad Welding、Crack、Excess Reinforcement、Good Welding、Porosity和Spatters。采用自建的钢材缺陷数据集,包括3037张训练图像、422张验证图像及205张测试图像,对模型进行了充分训练与验证。为了提升用户体验,系统集成了友好的UI界面和完善的登录注
2026-01-26 00:06:07
537
原创 基于深度学习YOLOv11的骨折识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文基于深度学习目标检测算法YOLOv11,构建了一套骨折识别检测系统。系统采用标注了三类目标(骨折Fracture、无骨折No_Fracture及其他物体object)的YOLO格式数据集,数据集包含2108张训练图像、602张验证图像和301张测试图像。通过对骨折部位的自动检测与分类,系统能够实现高效、准确的骨折识别,辅助医生快速诊断。系统还集成了用户登录注册功能及可视化UI界面,提升了实际应用的便捷性和用户体验。实验结果表明,该骨折识别系统在骨折检测任务中表现优异,具备良好的推广应用价值。
2026-01-26 00:05:19
376
原创 基于深度学习YOLOv12的骨折识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文提出了一种基于深度学习的骨折识别检测系统,采用最新的目标检测算法YOLOv12实现骨折病灶的快速准确定位与分类。系统共识别三类目标:骨折(Fracture)、非骨折(No_Fracture)以及其他对象(object),使用包含2108张训练图片、602张验证图片和301张测试图片的YOLO格式数据集进行模型训练和验证。该系统不仅具备较高的检测精度和实时性能,还集成了友好的用户界面(UI),支持登录注册功能,便于临床医生和相关技术人员操作使用。实验结果表明,基于YOLOv12的骨折检测系统在多类别骨折识
2026-01-26 00:04:48
289
原创 基于深度学习YOLOv11的草莓病害识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一套基于深度学习的草莓病害识别检测系统,采用YOLOv11目标检测模型对草莓叶片和果实的病害进行精准识别。系统共识别5类目标,分别为“Benh cao su”(橡胶病)、“Benh dom den”(黑斑病)、“Benh moc xam”(灰霉病)、“Benh phan trang”(白粉病)及“Qua binh thuong”(正常果实)。数据集包括700张训练集、81张验证集和103张测试集图像,均采用YOLO格式标注。为方便实际应用,系统集成了用户登录注册界面及图形化UI,实现了模型检
2026-01-26 00:04:17
697
原创 基于深度学习YOLOv12的草莓病害识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文基于YOLOv12深度学习框架,开发了一套草莓病害智能识别检测系统,旨在实现草莓常见病害的高精度、实时检测。系统针对5类目标进行识别,包括橡胶病(Benh cao su)、黑斑病(Benh dom den)、灰霉病(Benh moc xam)、白粉病(Benh phan trang)以及健康果实(Qua binh thuong)。数据集包含训练集700张、验证集81张和测试集103张图像,通过数据增强和迁移学习优化模型性能。系统集成用户友好的UI界面,支持登录注册功能,便于农户和农业技术人员使用。实验结
2026-01-26 00:03:46
693
原创 基于深度学习YOLOv11的车辆类型识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一种基于深度学习YOLOv11的车辆类型识别检测系统,能够高效准确地识别12类车辆目标,包括大型巴士(big bus)、大型卡车(big truck)、不同尺寸的公交车(bus-l-, bus-s-)、轿车(car)、中型卡车(mid truck)、小型巴士(small bus)、小型卡车(small truck)以及多规格卡车(truck-l-, truck-m-, truck-s-, truck-xl-)。系统采用YOLOv11算法进行模型训练与优化,并构建了包含2634张训练集、966
2026-01-26 00:03:15
415
原创 基于深度学习YOLOv11的垃圾检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
随着城市化进程加快,垃圾分类与回收成为环境保护的重要议题。传统垃圾识别方法依赖人工分拣,效率低且成本高。本文基于深度学习目标检测算法YOLOv11,开发了一套高效准确的垃圾检测系统,可自动识别10类常见垃圾(包括电池、衣物、玻璃、金属等)。系统采用YOLO格式数据集,包含训练集(9909张)、验证集(977张)和测试集(486张),通过数据增强与模型优化提升泛化能力。结合用户友好的UI界面与登录注册功能,该系统为垃圾分类管理提供了智能化解决方案。实验表明,模型在测试集上达到较高检测精度,验证了YOLOv11
2026-01-26 00:02:44
361
原创 基于深度学习YOLOv12的垃圾分类识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文提出了一种基于深度学习目标检测模型YOLOv12的垃圾智能分类系统,旨在实现高效、精准的垃圾识别与分类。系统针对10类常见垃圾(包括电池、衣物、玻璃、金属、塑料等)进行检测,采用自构建的YOLO格式数据集,包含训练集(9909张)、验证集(977张)和测试集(486张)。通过YOLOv12模型结构,系统集成用户友好的UI界面,支持登录注册功能,便于用户交互与数据管理。实验结果表明,该系统在实时性与准确性上均优于传统方法,为垃圾分类的智能化应用提供了可行解决方案。
2026-01-26 00:02:10
667
原创 基于深度学习YOLOv11的绝缘子缺陷检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一种基于深度学习YOLOv11的绝缘子缺陷检测系统,旨在提升电力巡检过程中对绝缘子损坏情况的自动化识别能力。系统采用包含4类缺陷类别(Broken、Flashover damage、No issues、String)的YOLO数据集进行训练,数据集规模为训练集2240张、验证集640张、测试集320张。通过对YOLOv11网络结构进行优化,本系统在保持检测精度的同时,显著提高了推理速度。项目集成了可视化UI界面,并具备登录注册功能,用户可在界面中上传或实时采集图像,获取检测结果与缺陷标注信息
2026-01-26 00:01:39
532
原创 基于深度学习YOLOv12的绝缘子缺陷识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一种基于深度学习YOLOv12的绝缘子缺陷检测系统,旨在提高电力输电线路巡检的自动化和智能化水平。系统采用最新的YOLOv12目标检测模型,对包含 4 类标签(Broken、Flashover damage、No issues、String)的绝缘子图像进行高精度识别。所用数据集包含训练集 2240 张、验证集 640 张和测试集 320 张图像,覆盖多种场景、光照和缺陷类型,保证了模型的泛化能力。为了方便实际应用,本系统集成了可视化UI界面,并提供用户登录与注册功能,便于运维人员快速部署与
2026-01-26 00:01:07
531
原创 基于深度学习YOLOv11的棉花叶片病害检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本研究构建了一套基于深度学习YOLOv11的棉花叶片病害检测系统,旨在实现棉花病害的快速、准确识别与分类。系统针对六类目标病害(blight、curl、grey mildew、healthy、leaf spot、wilt)进行检测,利用包含3708张训练集、232张验证集及233张测试集的高质量YOLO格式数据集进行模型训练与评估。在算法层面,采用YOLOv11模型以兼顾检测精度与推理速度,并在数据预处理、数据增强及模型超参数优化方面进行针对性改进。在应用层面,系统集成了友好的UI界面及登录注册功能,支持用
2026-01-26 00:00:36
515
原创 基于深度学习YOLOv12的棉花叶片病害识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
棉花作为重要的经济作物,其产量与质量直接受到病害的影响。传统人工巡检方法存在效率低、主观性强和覆盖范围有限等问题,亟需高效、准确的自动化病害检测技术。本文提出了一种基于深度学习YOLOv12的棉花叶片病害检测系统,结合自构建的棉花叶片病害数据集,实现对六类病害及健康状态的精准识别,包括blight、curl、grey mildew、healthy、leaf spot和wilt。数据集涵盖训练集3708张、验证集232张、测试集233张,经过数据增强与优化标注后,利用YOLOv12模型在检测精度与推理速度上均
2026-01-25 21:49:03
421
原创 基于深度学习YOLOv11的葡萄叶病害识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本研究构建了一种基于深度学习YOLOv11的葡萄叶病害识别检测系统,旨在实现对葡萄叶片病害的高精度、快速识别与分类。系统选取三类目标:黑腐病(Black_rot)、白腐病(Esca)与健康叶片(Healthy),利用包含训练集3758张、验证集538张、测试集1074张的高质量数据集进行模型训练与评估。模型采用YOLOv11架构,以提升对细小病斑区域的检测精度。在Python环境下,系统集成了UI图形化界面、用户登录注册功能及实时检测模块,支持本地图像、摄像头的病害识别。实验结果表明,该系统在精度(Prec
2026-01-25 21:47:53
403
原创 基于深度学习YOLOv12的葡萄叶病害识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
葡萄叶病害严重影响葡萄产量与品质,传统人工检测方法效率低且依赖经验。本文基于深度学习技术,提出一种基于YOLOv12的葡萄叶病害智能识别检测系统,实现Black_rot、Esca和Healthy三类叶片的高效分类与定位。系统采用改进的YOLOv12模型,在包含5370张图像的自建数据集(训练集3758张、验证集538张、测试集1074张)上进行训练与评估,结合PyTorch框架及Python开发的交互式UI界面,支持用户登录注册、图像上传及实时检测功能。实验表明,该系统在测试集上平均精度(mAP)达99.4
2026-01-25 21:47:08
413
原创 基于深度学习YOLOv11的水稻病害检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
水稻病害对农业生产和粮食安全构成严重威胁,快速准确的病害检测对病害防治至关重要。本文提出了一种基于YOLOv11深度学习模型的水稻病害检测系统,能够高效识别三种常见水稻病害:细菌性叶枯病(Bacteria_Leaf_Blight)、褐斑病(Brown_Spot)和叶黑粉病(Leaf_smut)。该系统采用包含6030张训练图像、409张验证图像和276张测试图像的自定义数据集进行训练和评估,并结合用户友好的UI界面,支持登录注册功能,便于农户和农业技术人员使用。实验结果表明,该系统在测试集上表现出较高的检测
2026-01-25 21:46:22
290
原创 基于深度学习YOLOv12的水稻病害检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
水稻病害严重威胁全球粮食安全,快速准确的病害检测对农业生产至关重要。本文基于YOLOv12深度学习框架,开发了一套高效的水稻病害智能检测系统,针对三种常见病害(细菌性叶枯病、褐斑病、叶黑粉病)进行识别。系统采用改进的YOLOv12模型,结合6030张训练图像、409张验证图像和276张测试图像构建的数据集,实现了高精度病害分类与定位。此外,系统集成用户友好的UI界面,支持登录注册功能,便于农户和农业技术人员使用。实验结果表明,该系统在测试集上达到平均精度(mAP)98.2%,检测速度达45 FPS,兼具准确
2026-01-25 21:45:57
295
原创 基于深度学习YOLOv11的小麦叶片病害识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
小麦是全球重要的粮食作物,其叶片病害严重影响产量与品质。为实现高效、准确的小麦病害识别,本研究基于YOLOv11深度学习算法,开发了一套小麦叶片病害智能检测系统。该系统可自动识别5类常见病害(健康叶片、白粉病、Septoria叶枯病、秆锈病、黄锈病),并配备用户友好的UI界面及登录注册功能。实验采用自建YOLO格式数据集,包含训练集2100张、验证集366张、测试集138张图像,模型在测试集上表现出较高的检测精度与鲁棒性。本研究为农业病害智能化监测提供了可行解决方案,具有实际应用价值。
2026-01-25 21:43:16
565
原创 基于深度学习YOLOv12的小麦叶片病害识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
小麦叶片病害严重影响作物产量与品质,快速准确的病害识别对农业生产至关重要。本文基于YOLOv12深度学习算法,构建了一种高效的小麦叶片病害智能检测系统。该系统可识别5类病害(健康叶片、白粉病、Septoria叶枯病、秆锈病、黄锈病),采用包含2604张图像的数据集(训练集2100张、验证集366张、测试集138张)进行模型训练与评估。结合用户友好的UI界面及登录注册功能,系统实现了病害检测的自动化与可视化。实验结果表明,YOLOv12在测试集上达到较高精度,为小麦病害早期诊断提供了可靠的技术支持。
2026-01-25 21:42:44
604
原创 基于深度学习YOLOv11的太阳能电池板缺陷识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
随着太阳能产业的快速发展,太阳能电池板的质量检测成为保障光伏系统高效运行的关键环节。传统的人工检测方法效率低且易受主观因素影响,而基于深度学习的智能检测技术能够大幅提升缺陷识别的准确性和自动化程度。本研究提出了一种基于YOLOv11的太阳能电池板缺陷检测系统,针对6类常见缺陷(黑芯、裂纹、指状断裂、水平错位、短路、粗线)进行高效识别。系统采用包含3512张训练图像、502张验证图像和1002张测试图像的数据集进行模型训练,并结合用户友好的UI界面和登录注册功能,实现了缺陷检测的便捷操作与管理。实验结果表明,
2026-01-25 21:42:13
439
原创 基于深度学习YOLOv12的太阳能电池板缺陷识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
随着太阳能产业的快速发展,太阳能电池板的质量检测成为保障光伏系统高效运行的关键环节。传统人工检测方法效率低、成本高,难以满足大规模生产需求。本文基于深度学习目标检测算法YOLOv12,设计并实现了一种高效、准确的太阳能电池板缺陷识别检测系统。该系统能够自动检测六类常见缺陷,包括黑芯(black_core)、裂纹(crack)、指状缺陷(finger)、水平位移(horizontal_dislocation)、短路(short_circuit)和粗线(thick_line)。实验采用自建数据集,包含训练集35
2026-01-25 21:41:41
503
原创 基于深度学习YOLOv11的风力叶片缺陷识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
一、项目介绍随着风力发电的快速发展,风力叶片作为核心部件,其表面缺陷的检测对保障机组安全运行至关重要。传统人工检测方法效率低且易受主观因素影响,而基于深度学习的智能检测技术能够显著提升缺陷识别的准确性和效率。本文提出了一种基于YOLOv11的风力叶片缺陷检测系统,针对7类常见缺陷(燃烧、裂纹、变形、污渍、油渍、剥落、锈蚀)进行自动化识别。系统采用包含3898张训练图像、380张验证图像和189张测试图像的数据集进行模型训练,并结合用户友好的UI界面与登录注册功能,实现了缺陷检测的便捷化与可视化。实验结
2026-01-25 21:37:35
591
原创 基于深度学习YOLOv12的风力叶片缺陷识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
针对风力发电机叶片表面缺陷检测效率低、人工成本高等问题,本研究提出了一种基于YOLOv12深度学习算法的智能化检测系统。该系统以Python为开发语言,集成YOLOv12目标检测模型,实现对叶片表面7类典型缺陷(烧蚀、裂纹、变形、污垢、油渍、剥落、锈蚀)的精准识别。实验采用自建风力叶片缺陷数据集(含训练集3898张、验证集380张、测试集189张),通过数据增强与迁移学习优化模型性能。系统配备用户友好的UI界面,支持登录注册功能,便于多用户协作管
2026-01-25 21:37:02
231
原创 基于深度学习YOLOv11的跌倒识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一种基于深度学习YOLOv11的跌倒识别检测系统,旨在通过实时目标检测技术识别跌倒行为,提升公共安全与老年监护能力。系统采用YOLOv11模型,针对三类目标('fallen'跌倒后、'falling'跌倒中、'stand'站立状态)进行优化训练,数据集包含训练集3594张和验证集294张图像。结合Python开发的UI界面与登录注册功能,系统具备用户友好的交互体验和可扩展性。实验表明,该系统在跌倒检测任务中表现出较高的准确性和实时性,可应用于养老院、医院等场景,为安全监护提供智能化解决方案。
2026-01-25 21:36:32
457
原创 基于深度学习YOLOv12的跌倒识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一种基于深度学习YOLOv12的跌倒识别检测系统,旨在通过实时视频监控准确识别跌倒行为,提升公共安全与老年人健康监护能力。系统采用YOLOv12目标检测算法,针对三类行为(跌倒中falling、已跌倒fallen、站立stand)进行优化训练,使用自建YOLO格式数据集(含训练集3594张、验证集294张)。结合PyQt开发的UI界面,系统支持用户登录注册。实验表明,该系统在复杂场景下具有较高的检测精度与实时性,可为智能安防和医疗监护提供有效解决方案。
2026-01-25 21:36:00
300
原创 基于深度学习YOLOv11的安检x光危险物识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
一、项目介绍随着公共安全需求的日益增长,安检X光图像中的危险物品检测技术成为研究热点。本文基于YOLOv11深度学习算法,构建了一套高效准确的X光危险物品检测系统,支持18类常见危险物品(如刀具、枪支、易燃物品等)的实时识别。系统采用包含4385张训练图像和1880张验证图像的标注数据集进行模型训练,并结合用户友好的UI界面与登录注册功能,实现从数据输入到结果可视化的完整流程。实验表明,该系统在复杂背景下仍能保持较高的检测精度与鲁棒性,可广泛应用于机场、地铁等安检场景,为智能安检提供可靠的技术支持。
2026-01-25 21:35:12
536
原创 基于深度学习YOLOv12的安检x光危险物识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
针对安检X光图像中危险物品的自动检测需求,本研究提出了一种基于YOLOv12深度学习算法的危险物识别检测系统。该系统能够高效识别18类常见危险物品,包括刀具(如Knife、Throwing Knife)、工具(如Hammer、Screwdriver)、易燃易爆物品(如Firecracker、Lighter)以及电子设备(如SmartPhone、USB)等。实验采用包含6,265张X光图像的自建数据集(训练集4,385张,验证集1,880张),通过优化YOLOv12模型结构和训练策略,实现了高精度和实时性的检
2026-01-25 21:34:39
353
原创 基于深度学习YOLOv11的红外太阳能板缺陷识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
随着光伏产业的快速发展,太阳能板的缺陷检测对保障发电效率和系统安全至关重要。传统检测方法依赖人工巡检,效率低且易漏检。本文提出一种基于深度学习YOLOv11的红外太阳能板缺陷识别检测系统,实现高效、自动化的缺陷分类与定位。系统针对四类常见缺陷(旁路二极管故障、电池片故障、结构缺陷、热斑)进行检测,采用包含1897张训练集、222张验证集和113张测试集的红外图像数据集进行模型训练与评估。结合用户友好的UI界面及登录注册功能。实验结果表明,YOLOv11在太阳能板缺陷检测中具有较高的准确率和实时性,为光伏运维
2026-01-25 21:34:07
348
原创 基于深度学习YOLOv12的红外太阳能板缺陷检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
随着光伏产业的快速发展,太阳能电池板的缺陷检测对保障发电效率与系统安全至关重要。传统检测方法依赖人工巡检,效率低且易漏检。针对这一问题,本研究提出了一种基于YOLOv12深度学习模型的太阳能板红外图像缺陷检测系统,能够高效识别四类典型缺陷(旁路二极管故障、电池片故障、结构缺陷、热斑)。系统采用1897张红外图像进行训练。此外,系统集成用户友好的UI界面与登录注册功能,支持缺陷可视化。
2026-01-25 21:33:08
600
原创 基于深度学习YOLOv11的皮肤病识别检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
皮肤癌是全球范围内最常见的恶性肿瘤之一,早期准确诊断对提高患者生存率至关重要。本研究基于包含7类皮肤病变的公开数据集,包括Bowen's Disease(鲍温病)、Basal Cell Carcinoma(基底细胞癌)、Benign Keratosis Lesions(良性角化病变)、Dermatofibroma(皮肤纤维瘤)、Melanoma(黑色素瘤)、Melanocytic Nevus(黑素细胞痣)和Vascular Lesions(血管性病变)。数据集共包含973张图像,其中训练集681张、验证集9
2026-01-25 21:32:36
242
原创 基于深度学习YOLOv12的皮肤病识别检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文提出了一种基于深度学习YOLOv12的皮肤病识别检测系统,旨在实现对7类常见皮肤病变的自动化识别与分类。该系统整合了YOLOv12目标检测算法、定制化的皮肤病YOLO数据集(包含Bowen's Disease、Basal Cell Carcinoma等7类病变,总计训练集681张、验证集97张、测试集195张图像),并开发了用户友好的UI界面及登录注册功能。实验结果表明,该系统在测试集上表现出较高的检测精度与鲁棒性,为皮肤病早期筛查提供了一种高效的辅助工具。本文详细阐述了数据预处理、模型训练、界面设计及
2026-01-25 21:31:43
390
原创 基于深度学习YOLOv11的无人机红外检测系统(行人车辆)(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)
本文设计并实现了一种基于深度学习YOLOv11算法的无人机红外检测系统,用于实时检测行人(Person)、车辆(Car)、其他交通工具(OtherVehicle)及干扰项(DontCare)四类目标。系统采用改进的YOLOv11模型,结合红外图像特性优化检测性能,并在自制数据集(训练集10,128张、验证集715张、测试集355张)上达到较高精度。此外,系统集成用户友好的UI界面,支持登录注册功能。实验表明,该系统在复杂环境下仍能保持稳定的检测效果,为安防监控、灾害救援等场景提供高效的技术支持。
2026-01-25 21:31:13
718
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅