自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1930)
  • 收藏
  • 关注

原创 基于YOLOv10的玉米杂草检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python项目源码+模型)

在农业生产中,杂草是影响作物生长和产量的重要因素之一。传统的杂草识别和清除方法通常依赖于人工操作,效率低下且成本较高。随着计算机视觉和深度学习技术的快速发展,基于图像的杂草自动检测系统逐渐成为研究热点。本项目旨在利用YOLOv10目标检测算法,实现对五种常见杂草(ji、caodizaoshuhe、shacao、li、yumi)的自动检测,为精准农业提供技术支持。

2025-12-22 11:47:26 640

原创 基于YOLOv10的裂缝检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python项目源码+模型)

本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的裂缝检测系统。系统能够实时检测图像或视频中的裂缝,并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别裂缝,满足建筑结构健康监测和基础设施维护的需求。

2025-12-22 11:46:50 1589

原创 基于深度学习YOLOv10的吸烟喝水手机检测系统(YOLOv10+YOLO数据集+UI界面+模型)

本项目旨在利用深度学习技术(如 YOLOv10),构建一个高效、准确的吸烟、喝水、手机检测系统。系统能够实时检测图像或视频中的吸烟、喝水或使用手机行为,并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别这些行为,满足公共场所监控和管理的需求。

2025-12-22 11:46:19 642

原创 基于YOLOv10的红细胞、白细胞和血小板检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python项目源码+模型)

本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的红细胞检测系统。系统能够实时检测图像中的红细胞(RBC)、白细胞(WBC)和血小板(Platelets),并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别血细胞,满足医学诊断和血液分析的需求。

2025-12-22 11:45:55 691

原创 基于深度学习YOLOv10的3D打印缺陷检测系统(YOLOv10+YOLO数据集+UI界面 +模型)

本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的 3D 打印缺陷检测系统。系统能够实时检测图像或视频中的 3D 打印缺陷,并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别缺陷,满足 3D 打印质量监控的需求。

2025-12-22 11:44:20 965

原创 基于深度学习YOLOv10的条形码检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的条形码检测系统。系统能够实时检测图像或视频中的条形码,并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别条形码,满足零售、物流和仓储管理的需求。

2025-12-22 11:43:42 965

原创 基于深度学习YOLOv10的水下鱼类检测系统(YOLOv10+YOLO数据集+UI界面+模型)

项目背景水下鱼类识别在海洋生态研究、渔业资源管理、水产养殖等领域具有重要意义。传统的水下鱼类识别方法依赖于人工观察或声呐技术,效率较低且容易受到水下环境的干扰。基于深度学习的目标检测技术能够自动识别鱼类,并在复杂水下环境中提供准确的检测结果。项目目标本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的水下鱼类识别系统。系统能够实时检测图像或视频中的鱼类,并输出检测结果。通过训练和优化模型,系统能够在复杂水下环境中准确识别鱼类,满足海洋生态研究和渔业资源管理的需求。技术栈。

2025-12-22 11:42:22 883

原创 基于深度学习YOLOv10的船舶类型识别检测系统(YOLOv10+YOLO数据集+UI界面+模型)

本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的船舶识别检测系统。系统能够实时检测图像或视频中的船舶,并识别其类型(如货船、油轮、游艇等)。通过训练和优化模型,系统能够在复杂海况下准确识别船舶,满足海洋交通管理和监控的需求。

2025-12-22 11:41:09 525

原创 基于深度学习YOLOv10的设备泄漏检测系统(YOLOv10+YOLO数据集+UI界面+模型)

本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的设备泄漏检测系统。系统能够实时检测图像或视频中的油液泄漏区域,并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别泄漏,满足工业设备监控和维护的需求。

2025-12-22 11:40:15 856

原创 基于深度学习YOLOv10的石油泄漏检测系统(YOLOv10+YOLO数据集+UI界面+模型)

本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的石油泄漏检测系统。系统能够实时检测图像或视频中的石油泄漏区域,并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别石油泄漏,满足环境监测和工业安全的需求。

2025-12-22 11:39:44 961

原创 基于YOLOv10的数字识别检测系统(YOLOv10深度学习+YOLO数据集+UI界面+模型)

本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的数字识别系统。系统能够实时检测图像或视频中的数字(0-9),并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别数字,满足实际应用需求。

2025-12-22 11:39:10 789

原创 基于深度学习的手机检测系统(YOLOv10+YOLO数据集+UI界面+模型)

本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的手机检测系统。系统能够实时检测图像或视频中的手机,并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别手机,满足实际应用需求。

2025-12-22 11:38:19 922

原创 基于YOLOv10的车辆类型检测系统(YOLOv10深度学习+YOLO数据集+UI界面+模型)

        YOLOv10七种车辆类型检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和分类七种不同类型的车辆。该系统能够自动识别车辆并将其分类为:tiny-car(小型汽车)、mid-car(中型汽车)、big-car(大型汽车)、small-truck(小型卡车)、big-truck(大型卡车)、oil-truck(油罐车) 和 special-car(特种车辆)。通过该系统,用户可以实时监控道路上的车辆类型分布,适

2025-12-22 11:34:22 505

原创 基于深度学习的无人机检测系统(YOLOv10+YOLO数据集+UI界面+模型)

        YOLOv10无人机识别检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和识别无人机(drone)。该系统能够自动识别并定位无人机,适用于空域监控、无人机管理、安防监控等场景。通过该系统,用户可以实时检测无人机的存在和位置,帮助维护空域安全、防止非法无人机入侵,并为无人机管理提供技术支持。

2025-12-22 11:33:00 531

原创 基于YOLOv10的奶牛行为检测系统(YOLOv10深度学习+YOLO数据集+UI界面+模型)

YOLOv10奶牛行为检测系统是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测奶牛的行为状态。站立行走和卧倒。通过该系统,用户可以实时监控奶牛的行为状态,帮助养殖场管理者优化奶牛的健康管理、提高生产效率,并为动物福利提供数据支持。该系统在智能养殖、动物行为研究、畜牧业管理等领域具有广泛的应用前景,能够为用户提供高效、准确的奶牛行为检测解决方案。

2025-12-22 11:32:37 836

原创 基于YOLOv10的食物检测系统(YOLOv10深度学习+YOLO数据集+UI界面+模型)

        YOLOv10过敏原食品检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和识别含有常见过敏原的食品。该系统能够自动识别30种常见过敏原食品,包括坚果、乳制品、蛋类、特定水果等,并将其分类为相应的类别。通过该系统,用户可以快速识别食品中的过敏原成分,帮助过敏人群避免摄入可能引发过敏反应的食物,提升食品安全管理水平。

2025-12-22 11:29:20 873

原创 基于深度学习的树上苹果检测系统(YOLOv10+YOLO数据集+UI界面+模型)

YOLOv10树上苹果检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测树上的苹果。该系统能够自动识别并定位树上的苹果(Apples),适用于果园管理、自动化采摘、产量预估等场景。通过该系统,用户可以快速检测树上苹果的数量和位置,优化果园管理流程,提高采摘效率,并为产量预估提供数据支持。

2025-12-22 11:28:25 660

原创 基于深度学习的苹果腐烂检测系统(YOLOv10+YOLO数据集+UI界面+模型)

        基于深度学习的苹果腐烂检测系统 是一个专注于检测苹果腐烂状态的智能系统,采用先进的深度学习技术(如YOLOv10或其他目标检测算法)实现高精度检测。该系统能够自动识别并定位腐烂的苹果(damaged_apple),适用于果园管理、水果分拣、食品质量检测等场景。通过该系统,用户可以快速识别腐烂苹果,减少人工检测成本,提高水果分拣效率和质量控制水平。

2025-12-22 11:27:52 954

原创 基于YOLOv10的苹果新鲜度检测系统(YOLOv10深度学习+YOLO数据集+UI界面+模型)

YOLOv10苹果检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和分类苹果的状态。该系统能够自动识别苹果并将其分类为两类:apple(正常苹果) 和 damaged_apple(受损苹果)。通过该系统,用户可以快速检测苹果的质量状态,适用于果园采摘、水果分拣、质量检测等场景,帮助提高生产效率并减少人工成本。

2025-12-22 11:25:59 742

原创 基于深度学习的冰箱内食物检测系统(YOLOv10+YOLO数据集+UI界面+模型)

YOLOv10冰箱内部成分检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和识别冰箱内部的多种食物成分。该系统能够自动识别冰箱中的30种常见食物,包括水果、蔬菜、肉类、乳制品、调味品等,并将其分类为相应的类别。通过该系统,用户可以实时了解冰箱内食物的存储情况,优化食物管理,减少浪费,并提升生活便利性。

2025-12-22 11:25:18 972

原创 基于YOLOv10的花生种子霉变检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python项目+模型)

        本研究利用YOLOv10模型进行花生种子霉变检测,旨在实现对花生种子质量的自动化、高效检测。花生种子在储存过程中易受霉菌侵害,导致霉变,影响其发芽率和食用安全。传统检测方法依赖人工判断,效率低且主观性强。基于深度学习的目标检测技术,尤其是YOLOv10模型,能够在保证高精度的同时实现实时检测。本研究通过构建包含大量标注数据的花生种子数据集,训练并优化YOLOv10模型,最终在测试集上取得了较高的检测精度,精度99.5%,为花生种子质量检测提供了一种高效的解决方案。

2025-12-21 20:55:07 981

原创 基于YOLOv10的疲劳驾驶检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python项目+模型)

        本项目旨在开发一个基于YOLOv10的疲劳检测系统,用于实时检测驾驶员的疲劳状态。系统通过分析驾驶员的面部表情,特别是眼睛和嘴巴的状态,来判断其是否处于疲劳状态。模型共分为四类:打哈欠(Yawn)、闭眼(close)、未打哈欠(noYawn)和睁眼(open)。通过深度学习技术,系统能够快速、准确地识别这些状态,从而为驾驶员提供及时的疲劳预警,提升驾驶安全性。

2025-12-21 20:33:23 797

原创 基于YOLOv10的昆虫识别检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python项目+模型)

        本系统基于YOLOv10模型,专门设计用于检测和识别10类常见的农业害虫。这些害虫包括:army worm(粘虫)、legume blister beetle(豆芫菁)、red spider(红蜘蛛)、rice gall midge(稻瘿蚊)、rice leaf roller(稻纵卷叶螟)、rice leafhopper(稻飞虱)、rice water weevil(稻水象甲)、wheat phloeothrips(麦蓟马)、white backed plant hopper(白背飞虱)和y

2025-12-21 20:32:51 803

原创 基于深度学习的香蕉成熟度识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本文介绍了基于YOLOv10的香蕉成熟度检测系统,旨在通过计算机视觉技术自动识别和分类香蕉的成熟度。该系统能够准确区分六种不同的成熟度类别:新鲜成熟(freshripe)、新鲜未成熟(freshunripe)、过熟(overripe)、成熟(ripe)、腐烂(rotten)和未成熟(unripe)。通过使用YOLOv10模型,我们实现了高效的实时检测,并在包含18,074张图像的数据集上进行了训练、验证和测试。实验结果表明,该系统在香蕉成熟度检测任务中表现出色,具有较高的准确率和鲁棒性。

2025-12-21 20:32:08 669

原创 基于YOLOv10的交通标志检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python项目+模型)

本项目致力于开发一个基于YOLOv10的交通标志检测系统,旨在通过计算机视觉技术实现对交通标志的高效检测与识别。该系统能够实时处理来自交通监控摄像头的视频流或图片,自动识别并标注出其中的交通标志,为自动驾驶、智能交通系统以及交通管理提供技术支持。

2025-12-21 20:31:37 901

原创 基于YOLOv10的杂草检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python项目+模型)

        本项目使用YOLO(You Only Look Once)目标检测算法进行特定杂草的自动识别,目标是通过计算机视觉技术识别并定位农田中的“0 ridderzuring”杂草,从而帮助农业自动化管理。杂草的及时识别与处理对于提高农业生产效率、保护农作物生长环境至关重要。YOLOv10,作为一种高效的目标检测算法,能够以较高的精度和速度检测出不同种类的目标,因此在农业领域得到了广泛应用。

2025-12-21 20:31:05 660

原创 基于YOLOv10的口罩检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python项目+模型)

        本项目基于最新的目标检测算法YOLOv10,构建了一款高效的口罩检测系统,可精准识别人员是否佩戴口罩,适用于疫情防控、智能监控等场景。该模型在保证高检测精度的同时,优化了推理速度,使其能够实时运行于监控设备、智能门禁、移动端等平台。

2025-12-21 20:30:15 211

原创 基于深度学习的大豆检测系统(YOLOv10+YOLO数据集+UI界面+Python项目+模型)

        本研究开发了一种基于YOLOv10的大豆检测系统,专注于检测单一类别:soybean(大豆)。该系统旨在实现对大豆的快速、准确检测,适用于农业自动化、产量评估和质量控制等场景。YOLOv10作为一种高效的目标检测模型,能够在保证高精度的同时实现实时处理。本研究通过构建包含大豆图像的数据集,训练并优化YOLOv10模型,最终在测试集上取得了较高的检测精度。该系统为大豆种植和管理的自动化提供了可靠的技术支持。

2025-12-21 20:28:47 751

原创 基于YOLOv10的生菜周期检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python+模型)

YOLOv10生菜生长周期检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和分类生菜在不同生长阶段的生长状态。该系统能够自动识别生菜的生长周期,并将其分类为五个不同的类别:Ready(成熟)、empty_pod(空荚)、germination(发芽)、pod(荚果) 和 young(幼苗)。通过该系统,用户可以实时监控生菜的生长状态,优化种植管理,提高农业生产效率。

2025-12-21 20:28:13 932

原创 基于YOLOv10的鸡检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python项目+模型)

        本研究开发了一种基于YOLOv10的鸡检测和跟踪系统,专注于检测单一类别:rooster(鸡)。该系统旨在实现对鸡的实时检测和跟踪,适用于养殖场管理、行为研究等场景。YOLOv10作为一种高效的目标检测模型,能够在保证高精度的同时实现实时处理。本研究通过构建包含鸡图像的数据集,训练并优化YOLOv10模型,最终在测试集上取得了较高的检测精度。此外,结合跟踪算法(如DeepSORT或ByteTrack),系统能够实现对鸡的连续跟踪,为养殖场自动化管理提供了技术支持。

2025-12-21 20:27:42 698

原创 基于YOLOv10的植物病害检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python项目+模型)

本项目旨在开发一个基于深度学习的植物病害检测系统,采用YOLOv10目标检测模型,能够高效准确地识别和分类多种植物叶片上的病害。系统支持实时摄像头检测及图片视频检测,具有较强的实用性和可扩展性,适用于农业病害监控和农田管理等实际场景。

2025-12-21 18:28:22 598

原创 基于YOLOv10的火焰烟雾检测系统(YOLOv10深度学习+YOLO数据集+UI界面+Python项目+模型)

火焰与烟雾的检测在很多领域中都至关重要,特别是在火灾监控、工业安全、环境保护等领域。准确、实时地识别火焰和烟雾的存在,不仅可以有效减少灾害发生的损失,还能够为相关部门提供及时的预警信息。因此,本项目采用了基于YOLOv10(You Only Look Once)的目标检测技术,开发了一套高效的火焰和烟雾检测系统,旨在通过计算机视觉技术,自动化识别火灾或火灾初期的烟雾现象。

2025-12-21 18:27:48 628

原创 基于YOLOv8的手势识别检测系统(YOLOv8深度学习+YOLO数据集+UI界面+Python项目+模型)

本项目基于先进的YOLOv8深度学习算法,开发了一套高效精准的实时手势识别检测系统。系统能够准确识别10种常见手势,包括字母手势(A、D、I、L、V、W、Y)、数字手势(5、7)以及特殊手势(I love you)。项目采用1400张手势图像数据集(训练集1200张,验证集200张),通过数据增强、迁移学习、模型优化等技术手段,显著提升了复杂场景下的手势识别准确率和鲁棒性。

2025-12-21 18:27:13 333

原创 基于YOLOv8的棉花分类检测系统(YOLOv8深度学习+YOLO数据集+UI界面+Python项目+模型)

本项目基于YOLOv8深度学习目标检测算法,开发了一套高效、精准的棉花品种智能分类检测系统。该系统能够自动识别并分类四种主要棉花品种:亚洲棉(G. arboreum)、海岛棉(G. barbadense)、草棉(G. herbaceum)和陆地棉(G. hirsutum)。系统采用数据增强、迁移学习、模型微调等技术优化检测性能,在有限的数据集下仍能实现较高的识别准确率。该模型可部署于农业智能终端、无人机巡检系统或实验室自动化分析平台,为棉花品种鉴定、育种研究和产业应用提供技术支持。

2025-12-21 18:26:33 536

原创 基于YOLOv8的垃圾分类检测系统(YOLOv8深度学习+YOLO数据集+UI界面+Python项目+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套高效准确的垃圾分类智能检测系统。系统针对四种常见垃圾类别(可回收物、有害垃圾、厨余垃圾和其他垃圾)进行识别分类,使用包含2743张图像的数据集(训练集1910张,验证集833张)进行模型训练与验证。该系统能够实时检测图像或视频流中的垃圾物品,并准确分类到相应类别,为智能垃圾分类提供技术支持。项目采用深度学习技术,通过数据增强、模型优化等手段提高了分类准确率,在验证集上达到了较高的识别精度。该系统可部署于智能垃圾桶、垃圾处理中心等场景,助力垃

2025-12-21 18:26:02 797

原创 基于YOLOv8的水藻检测系统(YOLOv8深度学习+YOLO数据集+UI界面+Python项目+模型)

本项目基于YOLOv8深度学习目标检测算法,开发了一套高效、精准的水藻检测系统,专门用于识别水体中的藻类分布情况。系统仅针对1个类别(水藻)进行检测,采用704张训练集图像和344张验证集图像进行模型训练,结合数据增强、迁移学习和模型优化技术,实现了较高的检测精度和鲁棒性。该系统可部署于无人机、水下机器人或固定监控设备,实时监测水体藻类生长状况,为水质管理、环境保护和生态研究提供智能化解决方案。

2025-12-21 18:25:31 513

原创 基于YOLOv8的辣椒叶片病害检测系统(YOLOv8+YOLO数据集+UI界面+Python项目+模型)

本项目基于YOLOv8目标检测算法,开发了一套高效、准确的辣椒叶片病害智能检测系统。系统可自动识别并分类5种辣椒叶片状态,包括黄单胞菌病(xanthomonas)、花叶病(mosaic)、健康叶片(healthy)、尾孢菌病(cercospora)和卷叶病(leaf curl)。数据集包含训练集1796张和验证集462张图像,通过数据增强、模型优化和迁移学习等技术,实现了高精度的病害检测。该系统可部署于移动端或嵌入式设备,为农业生产者提供实时、便捷的病害诊断工具,助力智慧农业发展。

2025-12-21 18:24:59 840

原创 基于YOLOv8的结核病检测系统(YOLOv8深度学习+YOLO数据集+UI界面+Python项目+模型)

本项目基于YOLOv8深度学习框架开发了一套高效的结核病杆菌自动检测系统,专门用于识别和定位医学影像中的结核病杆菌(TBbacillus)。系统采用单类别(nc:1)检测模式,针对结核病杆菌这一特定病原体进行了优化训练。项目数据集包含1098张训练图像和122张验证图像,经过数据增强和预处理,确保了模型的泛化能力。该系统能够快速、准确地从显微镜图像中识别结核病杆菌,为医疗诊断提供智能化辅助工具。实验结果表明,本系统在验证集上达到了较高的检测精度和召回率,显著优于传统人工检测方法。该系统具有部署灵活、检测速度

2025-12-21 18:24:10 760

原创 基于YOLOv8的传送带缺陷检测系统(YOLOv8深度学习+YOLO数据集+UI界面+Python项目+模型)

本项目基于YOLOv8深度学习算法开发了一套高效精准的传送带缺陷智能检测系统,能够实时识别并分类传送带表面常见的四种缺陷类型:堵塞(block)、裂纹(crack)、异物(foreign)和破洞(hole)。系统采用工业现场采集的专业数据集进行训练和验证,包含1860张训练图像、318张验证图像和167张测试图像,确保了模型在真实工业环境中的适用性和可靠性。

2025-12-21 18:21:28 801

原创 基于YOLOv8的人脸表情检测系统(YOLOv8深度学习+YOLO数据集+UI界面+Python项目+模型)

本项目基于先进的YOLOv8深度学习框架,开发了一套高效精准的人脸表情实时检测系统,能够识别并分类7种基本人类表情:愤怒(Angry)、厌恶(Disgusted)、恐惧(Fearful)、快乐(Happy)、平静(Neutral)、悲伤(Sad)和惊讶(Surprised)。系统采用包含4483张训练图像、550张验证图像和566张测试图像的专用表情数据集进行训练和评估,确保了模型对不同表情特征的强大识别能力。

2025-12-21 18:20:43 601

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除