
Datawhale AI夏令营
GBDT(Gradient Boosting Decision Trees,梯度提升决策树)是一种集成学习方法,通过逐步构建多个决策树来提升模型的性能。LightGBM特别适用于大规模数据和高维特征的数据集,在保证精度的同时大幅提升了训练速度和预测性能。回归预测是统计学和机器学习中的一种技术,用于预测连续型目标变量的值。回归预测的主要目的是建立一个数学模型,该模型能够根据输入特征预测目标变量的数值。机器学习模型是通过学习数据中的模式和关系来进行预测或决策的算法或统计模型。4.模型的训练和测试集的预测。









