当Spark Application运行在集群上时,主要有四个部分组成,如下示意图:

(1)Driver:是一个JVM Process 进程,编写的Spark应用程序就运行在Driver上,由Driver进
程执行;
(2)Master(ResourceManager):是一个JVM Process 进程,主要负责资源的调度和分配,并
进行集群的监控等职责;
(3)Worker(NodeManager):是一个JVM Process 进程,一个Worker运行在集群中的一台服
务器上,主要负责两个职责,一个是用自己的内存存储RDD的某个或某些partition;另一个是
启动其他进程和线程(Executor),对RDD上的partition进行并行的处理和计算。
(4)Executor:是一个JVM Process 进程,一个Worker(NodeManager)上可以运行多Executor,Executor通过启动多个线程(task)来执行对RDD的partition进行并行计算,也就是执行我们对RDD定义的例如map、flatMap、reduce等算子操作。
Spark Application中Job执行有两个主要点:
(1)RDD输出函数分类
第一类:返回值给Driver Program,如count、first、take、collect等
第二类:没有返回值,比如直接打印结果、保存至外部存储系统(HDFS文件)等
(2)在JOb中从读取数据封装为RDD和一切RDD调用方法都是在Executor中执行,其他代码都是在Driver Program中执行
SparkContext创建与关闭、其他变量创建等在Driver Program中执行
RDD调用函数都是在Executors中执行
Spark支持多种集群管理器(Cluster Manager),取决于传递给SparkContext的MASTER环境变量的
值:local、spark、yarn,区别如下:

8875

被折叠的 条评论
为什么被折叠?



