- 博客(116)
- 收藏
- 关注
原创 MyBatis——增删查改(XML 方式)
使用注解的方式主要是完成一些简单的增删查改功能,如果要实现复杂的 SQL 功能,还是建议使用 XML 来配置映射语句,将 SQL 语句写在 XML 配置文件中。对象的 “id” 属性上,虽然说写不写都可以,但是建议还是写上,同时,其他 java 对象的属性名和 MySQL 中的字段对应的也建议写上。如果要操作数据库,需要做以下的配置,与注解方式不同的是,还需要配置一下 XML 文件的路径,这样才能获取其中的配置信息。Mybatis 是把 SQL 查询到的信息根据参数的映射来赋值的,只需要把。
2024-11-12 08:06:07
1114
94
原创 腾讯云双十一重磅优惠来袭,带你掌握最强攻略密码
首先就是,同一个账号是可以参与不同的团的,但是一个团是不能用两个相同的账号参加的,仅需两个人就能拼团成功,这不拉上小伙伴一起冲一下,没有小伙伴怎么办呢,官方也贴心的为大家准备好了拼团群,大家可以在里面找拼团的朋友一起拼,这就意味着看到心仪的云产品都能通过拼团来获取最大的优惠,不过需要注意一下,发起拼团之后如果没有邀请人参团还是会失败的,两个人就能拼团,几乎是无门槛了,也不会出现失败的可能。两万元的代金券,这不狠狠地把团长比下去,或者自己做团长,要不就合作一把,把代金券白嫖到手,岂不是美滋滋。
2024-11-11 12:41:17
812
3
原创 丹摩征文活动|新手入门指南
丹摩智算平台是一款功能强大的计算平台,专为大规模AI模型的开发和部署设计。它支持从数据集上传、模型训练到评估部署的一体化流程,适用于自然语言处理(NLP)、计算机视觉(CV)等多个领域的任务。主要特色:大规模训练支持:可以灵活配置训练资源,满足不同规模的模型需求;分布式计算:支持多机多卡的分布式训练,加速模型优化过程;实时监控与调试:可视化界面方便用户监控训练进度,支持在线调试和参数调整;一键部署服务:训练完成的模型可以直接发布为API服务,实现快速部署。
2024-11-08 21:37:38
943
21
原创 MyBatis项目的创建和增删查改操作
介绍了Mybatis的项目如何创建,配置文件出现中文乱码如何解决,还有使用Mybatis进行增删查改如何操作
2024-11-08 08:06:57
1968
117
原创 Spring Boot——日志介绍和配置
在前面的学习中,控制台上打印出来的一大堆内容就是日志,可以帮助我们发现问题,分析问题,定位问题,除此之外,日志还可以进行系统的监控,数据采集等日志门面就相当于是淘宝 APP,日志实现相当于入驻的商家,在使用时是使用淘宝,真正提供商品的还是商家也就是使用时使用 SLF4J,真正实现功能还是日志实现的框架SLF4J 就是其他日志框架的门面,相当于提供日志服务的统一 API 接口,并不涉及到具体的日志逻辑实现,而是一个抽象层,对日志框架制定的一种规范、标准、接口。
2024-11-05 08:24:16
2252
138
原创 Spring Boot——配置文件
当应用程序启动时,Spring Boot 会自动从 classpath 路径找到并加载 application.properties 和 application.yml (application.yaml) 文件。properties 是以键值的形式配置的,key 和 value 之间以“=”连接,单词之间通过 ' . ' 来分割。并且配置文件的名称是不能修改的,只能叫 application。注解来实现的,其中填的参数和配置文件中对象的名称是对应的。yml 是 yaml 的简写,使用方法是一样的。
2024-11-04 08:09:07
1334
21
原创 Spring IoC——依赖注入
DI,也就是依赖注入,在容器中建立的 bean (对象)与 bean 之间是有依赖关系的,如果直接把对象存在 IoC 容器中,那么就都是一个独立的对象,通过建立他们的依赖关系,才能拿出一个对象,然后与它建立依赖关系的对象就也可以使用,在 Spring 的 IoC 容器中,通过配置可以明确各个 Bean之间的依赖关系当一个 Bean 需要另一个 Bean 时,IoC 容器会自动将依赖的 Bean 注入进来,这个过程就是依赖注入。
2024-11-02 07:56:02
2987
138
原创 Spring IoC——IoC 容器的使用
IoC:也就是控制反转Spring IoC 是一种设计模式,用于解耦对象之间的依赖关系,在之前创建的项目中对象通常会主动创建和管理自己所依赖的对象,例如,一个类可能会在自己的内部使用new关键字来创建一个对象用于数据访问,这样设计看似没有问题,但是可维护性却很低,当有很多类创建了各自的对象时,并且这些对象之间还有依赖关系,例如创建 Car ,Framework,Bottom,Tire 类,从左到右依次存在依赖关系,当其中有一个类的底层代码改变之后,调用链上的代码都需要修改car.run();
2024-10-31 07:54:33
3649
113
原创 没有对象来和我手撕红黑树吧
每个节点不是红色就是黑色根节点为黑色如果一个节点为红色,那么它的两个孩子节点为黑色(一条路径上不能有两个连续的红色节点)对于每个节点,从该节点及其所有后代所在的叶子节点的简单路径上,均包含相同数目的黑色节点每一个叶子节点都是黑色的这里节点除了包含节点的值,左子树,右子树和父亲节点的引用外,还需要添加颜色的属性//新创建的节点默认是红色的颜色只有红色和黑色,可以使用枚举类来定义节点的颜色RED,BLACK。
2024-10-30 08:36:39
1552
9
原创 高阶 DS——手撕平衡二叉搜索树
在二叉搜索树的基础上,加入一个平衡因子来描述左子树和右子树的高度差//平衡因子,右子树高度 - 左子树高度。
2024-10-29 08:48:25
789
10
原创 【Spring MVC】请求参数的传递
在上面提到过,前端传递的参数要和后端方法里的参数保持一致,而前端可能会传入各种各样的参数,比如 userName, productName 等,后端如果只想要一个 name 的话可以对前端传递的参数进行重命名,把前端传入的名称都重命名为 name,后续就使用 name 进行操作,这就需要使用到。错误日志上描述的是 String 类型转化为其他类型失败,传递的普通参数,默认的类型是 String ,后端接收时根据定义的类型再进行相应的转化。那么第一种传入的数据是按照字符来传的还是按照数组中的三个元素来传的。
2024-10-28 08:20:56
2711
109
原创 【动态规划】回文串问题
首先和判断回文串一样,判断 i , j 位置的字符是否相同,如果相同的话,就分为三种情况:i = j 时,也就意味着区间内只有一个字符,那么 dp 值就是 1,如果 i + j = j 的话,那么就意味着区间内是只有 i , j 两个元素, dp 值就是 2,其他情况就是找出从 i + 1,j - 1 区间内的最大值再加上 2。在求回文串的时候,暴力解法就是,先确定开头,然后依次遍历每一个结尾位置是否为回文串,然后再换下一个开头,也就是一个二维数组的遍历方式,当换一个开头的时候,前面的就不用再遍历了。
2024-10-26 07:55:54
1012
12
原创 【动态规划】子序列问题(下)
先来尝试还按照之前的状态表示一样,用 dp[i] 来表示以 i 位置为结尾的所有子序列中,最长的等差数列的长度,但是此时填表的话会发现,前一个位置的 dp 值是不能确定公差为多少的,只是表示了一个长度,所以一维的 dp 表不行,需要使用二维 dp 表。填表顺序:由于需要确定距离 b 最近的 a,如果还是按照上一题的方法,固定 j 移动 i 的话,k 的位置是不断变化的,很难确定 k 的位置,如果反过来,固定 i ,移动 j ,那么再获取 k 的位置就是距离 b 最近的了。
2024-10-25 08:00:41
883
9
原创 【动态规划】子序列问题(上)
求最长递增子序列的长度是和之前一样的,求个数的时候由于以 i 结尾时可能会有多个递增子序列的长度是一样的,所以就需要把这些情况都加起来,由于求的是最长的子序列,在开始从左往右遍历的时候还不能确定整个数组中的最长递增子序列长度,但是可以知道以当前位置结尾时的最长长度,当后续再遇到更长的子序列,就需要把 count 表里的重新更新,遇到一样的话就相加。f[i] :以 i 位置为结尾的所有子序列中,最后一个状态处于上升状态的最长摆动子序列的长度。状态表示:以 i 位置为结尾的所有的子序列中最长递增子序列的长度。
2024-10-24 20:10:10
1143
10
原创 【Spring MVC】请求参数的获取
cookie 就相当于这个令牌,当用户首次访问一个网站时,服务器可以在响应中设置 Cookie,并将其发送给客户端浏览器。浏览器会将 Cookie 存储起来。在后续的请求中,浏览器会自动在请求头中携带该网站的 Cookie 信息发送给服务器。服务器通过读取 Cookie 中的数据来识别用户和获取相关状态信息。Session 是在服务器端用于跟踪用户会话状态的一种机制,当用户首次与服务器建立连接时,服务器会创建一个唯一的Session ID,并将这个 ID 返回给客户端。
2024-10-23 08:12:52
4118
131
原创 【Spring MVC】创建项目和建立请求连接
是用来注册接口的路由映射的,表示服务器收到请求时,映射的“/hello”路径就会调用 hello 的方法,路径的名称也可以随便写,不用和方法名保持一致。可以理解为⼀个分发器,⽤来决定对于视图发来的请求,需要⽤哪⼀个模型来处理,以及处理完后需要跳回到哪⼀个视图。既可以修饰类,也可以修饰方法,当修饰类和方法时,访问的路径是类路径 + 方法路径,如果不加类路径还是会找不到页面。标识了这是一个控制器类,一个项目中会有很多类和方法,Spring 会对所有的类进行扫描,如果添加了。注解,才会去访问这个类中有没有。
2024-10-22 08:03:01
1347
11
原创 教你不用下载 maven,不用配置环境变量,在 idea 上创建 maven 项目
打包就是把所有的 class 文件全部放在一起,打成 jar 包 或者 war 包,jar 包是把开发人员已经写好的一些代码进行打包,打好的 jar 包可以引入到其他项目中,也可以直接使用这些 jar 包中的类和属性,也可以打成可执行 jar 包,这样的包就可以通过 java -jar 命令来执行。例如下面导入 jar A 之后,B 和 C 也会导进来,这样就可能会发生依赖的冲突,例如导入了一个相同 jar 包的不同版本,这时就需要去判断使用哪个版本了,就需要进行依赖排除。
2024-10-21 07:55:07
1550
105
原创 【Python】基础语法
在 Python 中除了有 + ,- , * ,/ 之外,还有 乘方 **, //(地板除法,向下取整) 的运算符,并且 Python 中的 / 是可以得到小数的,并不像 Java 那样取整数部分。还有关于浮点数的比较,使用 == 来比较的话是存在一定问题的,因为浮点数在内存中的存储和表示是可能存在误差的,这样的误差在进行算术运算时就可能会被放大。还有 += ,-= ,*=,&=,/=,**=,//= 这样的操作,而自增++,自减--,这样的操作在 Python 中是不支持的。
2024-10-20 07:49:24
1409
10
原创 【机器学习】图像识别——计算机视觉在工业自动化中的应用
本文详细探讨了图像识别技术在工业自动化中的广泛应用,包括质量控制、物体检测与分拣、机器人视觉导航和安全监控等场景。图像识别依赖于深度学习模型,尤其是卷积神经网络(CNN),其中ResNet、YOLO和Faster R-CNN等模型各有其优势。ResNet适用于高精度检测,YOLO注重实时性,而Faster R-CNN则适合小物体的高精度识别。通过代码示例展示了如何在工业场景中应用YOLO进行物体检测。
2024-10-19 07:56:55
3822
100
原创 JavaScript的引入方式和基础语法
JavaScript 中创建对象使用一组 { } ,里面的属性和值通过键值对来组织,键值对之间使用逗号分割,键和值之间用冒号区分,获取对象的属性也是通过 ' . ' 来获取,还可以通过 ' [ ] ' 来访问属性,此时属性需要加上引号。JavaScript 的变量可以存放不同的类型的值,一个 var 可以声明各种变量,这些变量的类型在程序运行的过程中还可能发生改变。再来看 val() 方法,val 是获取或者设置表单字段的值,同理,如果有参数就表示设置值,没有参数就表示获取值。
2024-10-18 07:51:32
1635
17
原创 CSS的引入方式和选择器
CSS 用于定义网页的样式,包括字体、颜色、布局、背景等各个方面。它与 HTML 紧密结合,HTML 负责构建网页的结构,而 CSS 则负责美化这个结构。
2024-10-16 07:47:04
1313
4
原创 【机器学习】智能聊天机器人——基于自然语言处理的智能对话系统
自动化客户服务和智能聊天机器人通过机器学习技术,为企业提供了高效、全天候的客户支持。机器学习在意图识别、对话管理、情感分析和个性化推荐中发挥关键作用,使系统能够理解并回应客户的需求。同时,自然语言处理技术(NLP)使聊天机器人能进行自然的多轮对话,提高交互体验。Amazon Alexa、Google Assistant 和 Zendesk Chat 等案例展示了这些技术的成功应用,帮助企业降低成本、提高客户满意度,并优化服务流程。
2024-10-15 08:10:21
2025
122
原创 【动态规划】子数组系列(下)
第 i - 1 和 i 位置的状态可能会有下降,上升,相等三种状态,所以定义一个 dp 状态就不够了,需要定义一个上升状态和一个下降状态,当 i - 1 到 i 处于下降状态时,之前应该是处于上升状态的,也就是 f[i - 1],再加上 1 就是以第 i 个位置为结尾时处于下降状态的最长数组长度,上升也是一样的道理,需要在第 i - 1 位置处于下降状态,就是 g[i - 1] + 1,相等时等于 1 即可。状态表示:先用 dp[i] 来表示以第 i 个位置为结尾时的最长湍流数组的长度。
2024-10-14 07:48:47
1133
8
原创 【动态规划】子数组系列(上)
同理,求最小值 g[i] 时,如果说当前元素是一个正数,那么就需要乘上一个最小的负数,也就是 g[i - 1],如果是负数的话就需要找一个最大的正数来乘,最终确定最小值时需要再加上当前元素,这三个数一起求一个最小值即可。i 位置为结尾的子数组又可以分为长度为 1 的和大于 1 的,长度为 1 就是 nums[i] ,长度不为 1 就是 dp[i - 1] + nums[i],最后取这两个的最大值即可。为了简便,长度为 1 时的状态可以和下面长度大于 1 的合并一下,不影响结果。
2024-10-13 07:48:26
1157
11
原创 【机器学习】推荐系统——基于用户行为分析的个性化推荐技术
推荐系统是一种通过分析用户行为、历史偏好等数据,预测用户可能感兴趣的内容或商品的技术。它广泛应用于电子商务、流媒体等平台,目标是提高用户参与度、增加转化率并帮助用户快速找到感兴趣的内容。常见类型包括基于内容、协同过滤和混合推荐系统,常用算法有K近邻、矩阵分解及深度学习模型。Netflix和Amazon通过推荐系统显著提升了用户体验和平台收益,展示了推荐技术的重要价值。
2024-10-12 08:18:01
5117
110
原创 【动态规划】状态 dp
动态规划步骤: 62. 不同路径状态表示:以 dp[i][j] 为结尾,走到 dp[i][j] 位置时一共有几种方式状态转移方程:走到 (i , j) 位置时,它只可能是从上面的格子和左边的格子过来的,走到这两个格子之后再走一步就到 (i , j) 了,所以走到 (i, j) 位置的方式就是把走到上面的格子和左边的格子的方案数加起来,也就是 dp[i - 1][j] + dp[i][j - 1]初始化:填 dp 表的时候,由于需要用到上边和左边的格子,填最上面的一行和最左边的一列时会越界,为了避免越界可以把
2024-10-11 07:48:50
931
10
原创 【机器学习】金融预测 —— 风险管理与股市预测
本文详细探讨了机器学习在金融预测中的重要应用,包括风险管理和股市预测。通过信用风险、市场风险、操作风险管理,机器学习帮助金融机构更精准地识别和应对潜在风险。在股市预测方面,尽管数据噪声大、关系复杂,但深度学习技术(如LSTM和Transformer)以及文本情感分析显著提升了预测的精度。结合海量数据和先进的算法,机器学习在金融领域为投资者和机构提供了更高效的决策支持工具。
2024-10-10 08:05:09
2867
113
原创 位运算详解
本文介绍了位运算符及其基本操作,并通过几个例题详细解析了位运算的应用。内容包括左移`<<`、右移`>>`、按位取反`~`、与运算`&`、或运算`|`和异或运算`^`等运算符的使用方法。基本操作部分展示了如何检查和修改二进制位,以及异或运算的性质。例题部分则通过判定字符是否唯一、丢失的数字、两整数之和和消失的两个数字等问题,具体说明了位运算的实际应用技巧。
2024-10-09 07:57:30
1035
16
原创 【动态规划】斐波那契模型 dp
初始化:初始化 dp[0] 的时候也是有两种情况的,解码成功就是 1,解码失败就是 0,初始化 dp[1] 的时候就有三种情况了,由于是两个数字,所以就需要考虑两个单独解码和结合起来解码,如果都解码失败就是 0,如果单独解码成功就加 1,如果结合起来解码又成功了就再加上 1。初始 dp[n - 1] 时就表示从 n - 1 位置支付 cost[n - 1] 就可以直接到达楼顶,dp[n - 2] 时支付 cost[n - 2] 也可以直接到达楼顶。最后的返回值也就是 dp[0] 和 dp[1] 的最小值。
2024-10-08 07:59:23
1029
4
原创 【机器学习】网络安全——异常检测与入侵防御系统
本文探讨了机器学习在网络安全中的应用,特别是异常检测与入侵防御系统(IDPS)。传统网络安全方法面临未知攻击难以应对、高误报率和复杂攻击难检测的局限。机器学习凭借自动化威胁检测、动态适应性和处理大规模数据等优势,提升了检测效率和准确性。常用的机器学习算法包括K-means聚类、决策树、SVM、自编码器和深度学习等,结合数据预处理和特征提取,能有效识别潜在威胁并自动防御。
2024-10-07 08:36:40
2632
113
原创 二分算法详解
本文介绍了二分查找及其相关问题的解决方法,包括基本的二分查找、查找元素的第一个和最后一个位置、求平方根、搜索插入位置、寻找峰值和旋转数组中的最小值等问题。通过详细分析每种情况下的二分查找策略,如循环条件、区间划分及特殊情况处理,提供了清晰的代码实现。适用于算法初学者和需要巩固二分查找技巧的开发者。
2024-10-06 10:15:19
1167
5
原创 前缀和算法详解
本文介绍了前缀和及其变种在解决区间求和问题中的应用。首先,一维前缀和可通过预处理数组快速求得任意区间的和。接着,二维前缀和扩展了这一思想,适用于矩阵操作。此外,文章探讨了如何利用前缀和解决诸如“寻找数组中心下标”、“除自身以外数组的乘积”等问题,并进一步讲解了涉及哈希表优化的“和为 K 的子数组”等相关题目。最后,通过实例展示了如何在矩阵中高效计算特定区域的元素之和。文中包含代码示例与图解说明,便于理解。
2024-10-04 09:30:09
1399
15
原创 【AIGC】内容创作——AI文字、图像、音频和视频的创作流程
AIGC技术在视频和虚拟角色生成领域的应用不断拓展。AI自动化视频编辑工具如Runway ML,帮助创作者快速生成短视频、电影后期等内容。虚拟角色和数字人逐渐在娱乐和社交媒体中流行,虚拟主播、虚拟偶像通过AI与用户实时互动,提供个性化体验。随着深度伪造技术和语音生成的进步,虚拟角色不仅在娱乐领域,还在广告、教育等行业发挥了重要作用,未来将在元宇宙中扮演更大角色。
2024-10-03 18:38:23
5972
93
原创 https协议是怎么进行加密的
在使用HTTP协议时,数据传输是明文形式,容易遭受运营商劫持等安全问题,如篡改返回网页内容、修改Referer字段等。为解决这些问题,引入了HTTPS协议,它通过加密、认证和完整性保护,确保通信内容不被第三方窃听或篡改。HTTPS结合了对称加密和非对称加密,使用公钥加密对称密钥,私钥解密,确保数据安全性和传输效率。然而,中间人攻击仍可能破解这一机制,因此引入证书机制,客户端通过验证证书中的数字签名来确认公钥的有效性,从而保障数据传输的安全性。
2024-10-02 09:17:55
2093
14
原创 JVM 的内存区域划分,类加载过程和垃圾回收机制
本文介绍了 JVM 的内存区域划分、类加载过程及垃圾回收机制。内存区域包括程序计数器、堆、栈和元数据区,每个区域存储不同类型的数据。类加载过程涉及加载、验证、准备、解析和初始化五个步骤。垃圾回收机制主要在堆内存进行,通过可达性分析识别垃圾对象,并采用标记-清除、复制和标记-整理等算法进行回收。此外,还介绍了 CMS 和 G1 等垃圾回收器的特点。本文介绍了 JVM 的内存区域划分、类加载过程及垃圾回收机制。内存区域包括程序计数器、堆、栈和元数据区,每个区域存储不同类型的数据。类加载过程涉及加载、验证、准备、
2024-10-01 08:53:57
1332
7
原创 【机器学习】自动驾驶——智能交通与无人驾驶技术的未来
本文探讨了自动驾驶技术中的机器学习应用,包括深度学习、强化学习在感知与决策中的作用,传感器融合技术的多维数据整合,路径规划中的动态计算,以及自动驾驶中的数据处理与目标检测。文章分析了深度强化学习如何通过与环境交互优化驾驶策略,并探讨了自动驾驶在个人交通、物流配送和智能交通系统中的应用。最后,文章讨论了自动驾驶面临的安全性、法规、计算资源等挑战,以及未来L5级自动驾驶的趋势与发展方向。
2024-09-30 08:15:32
3064
111
原创 http 协议的报文格式和 http 状态码
本文全面介绍了 HTTP。包括基本介绍如常用 1.1 版本及与 HTTPS 区别;报文格式有请求和响应;方法有 GET 和 POST 及 Restful 风格;还阐述了报头如 Host、Content-Length 等,UA、Referer 字段、Cookie。最后讲解了状态码
2024-09-28 11:13:12
3037
29
原创 【机器学习】音乐生成——AI如何创作个性化音乐与配乐
AI音乐生成技术通过算法和数据驱动的方式模仿作曲过程,提升创作效率。主要有两条技术路径:基于规则的生成依赖于预定义音乐理论,而机器学习驱动的生成则利用深度学习、生成对抗网络(GAN)、长短期记忆网络(LSTM)等算法,从大量音乐数据中学习模式生成新音乐。AI在广告、电影、游戏配乐等领域广泛应用,个性化音乐推荐也通过分析用户习惯生成定制化音乐,推动音乐行业创新和变革。
2024-09-26 11:05:19
7634
121
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅