1、领接矩阵:
用一个一维数组存放图中所有顶点数据;用一个二维数组存放顶点间关系的数据,这个二维数组称为邻接矩阵。
创建一个二维数组 v[5][5],将点作为下标,数组值代表这条边的权值,a=1、b=2、c=3、d=4,由图知v[1][2]=3。

2、数组存边:
struct Edge{
int value; //边的权
int to; //边的终点
int from; //边的起点
}edge[500005];
//存边
for(int i = 0; i < m; i++){
cin >> u >> v >> w;
edge[i].from = u;
edge[i].to = v;
edge[i].value = w;
}
3、领接表:
图的邻接表存储方法跟树的孩子链表示法相类似,是一种顺序分配和链式分配相结合的存储结构。如这个表头结点所对应的顶点存在相邻顶点,则把相邻顶点依次存放于表头结点所指向的单向链表中。
vector<int> a[500005];
//存边
for(int i = 0; i < m; i++){
cin >> u >> v; //u点与v点是连通的
a[u].push_back(v);
//a[i]存的为与 i 点相连的点,但一般不存边权
}
//遍历
for(int i = 1; i <= n; i++){//遍历起点
for(int j = 0; j < a[i].size(); j++){//遍历和 i 相连的点
cout << "起点:" << i << "终点:" << a[i][j] << endl;
}
}
4、链式向前星:
链式向前星是图的一种存储结构,采用数组模拟链表实现前向星的功能,简单来讲,它按照边来存图,而邻接矩阵是按照点来存图。
struct Edge{
int next; //下个同起点的边的在edge数组里的下标
int value; //当前边的边权
int to; //这条边的终点
}edge[500005];
int first_edge[500005];// first_edge[i]存的是以 i 为起点的第一个边在edge数组里的下标
//存边
void add(int u, int v, int val, int i){
edge[i].to = v;//记录这条边的终点
edge[i].value = val;//边权
edge[i].next = first_edge[u];//下条同起点的边的下标为原先得第一条边的下标
first_edge[u] = i;//新的第一条边更新
}
//遍历
for(int j = 1; j <= n; j++){
for(int i = first_edge[j]; i != 0; i = edge[i].next){//遍历起点为 j 的所有边
cout << " 起点:" << j << " 终点:" << edge[i].to << " 边权:" << edge[i].value << endl;
}
}
3050

被折叠的 条评论
为什么被折叠?



