图的储存方式

 1、领接矩阵:

用一个一维数组存放图中所有顶点数据;用一个二维数组存放顶点间关系的数据,这个二维数组称为邻接矩阵。 

创建一个二维数组 v[5][5],将点作为下标,数组值代表这条边的权值,a=1、b=2、c=3、d=4,由图知v[1][2]=3。

 2、数组存边:

struct Edge{
	int value;	//边的权
	int to;		//边的终点
	int from;	//边的起点 
}edge[500005];

//存边
	for(int i = 0; i < m; i++){
		cin >> u >> v >> w;
		edge[i].from = u;
		edge[i].to = v;
		edge[i].value = w;
	} 

3、领接表:

图的邻接表存储方法跟树的孩子链表示法相类似,是一种顺序分配和链式分配相结合的存储结构。如这个表头结点所对应的顶点存在相邻顶点,则把相邻顶点依次存放于表头结点所指向的单向链表中。 

vector<int> a[500005];
//存边
for(int i = 0; i < m; i++){
	cin >> u >> v;	//u点与v点是连通的 
	a[u].push_back(v);
	//a[i]存的为与 i 点相连的点,但一般不存边权 
} 
//遍历
for(int i = 1; i <= n; i++){//遍历起点
	for(int j = 0; j < a[i].size(); j++){//遍历和 i 相连的点
		cout << "起点:" << i << "终点:" << a[i][j] << endl; 
	} 
} 

4、链式向前星:

链式向前星是图的一种存储结构,采用数组模拟链表实现前向星的功能,简单来讲,它按照边来存图,而邻接矩阵是按照点来存图。 

struct Edge{
	int next;	//下个同起点的边的在edge数组里的下标 
	int value;	//当前边的边权
	int to;		//这条边的终点
}edge[500005];
int first_edge[500005];// first_edge[i]存的是以 i 为起点的第一个边在edge数组里的下标 
//存边
void add(int u, int v, int val, int i){
	edge[i].to = v;//记录这条边的终点
	edge[i].value = val;//边权
	edge[i].next = first_edge[u];//下条同起点的边的下标为原先得第一条边的下标
	first_edge[u] = i;//新的第一条边更新 
}
//遍历
for(int j = 1; j <= n; j++){
	for(int i = first_edge[j]; i != 0; i = edge[i].next){//遍历起点为 j 的所有边
		cout << "  起点:" << j << "  终点:" << edge[i].to << "  边权:" << edge[i].value << endl;
	} 
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值