为什么说大模型无法取代AI Agent ?

OpenAI CEO Sam Altman最近在一次互动访谈中谈到,人类带宽的限制可能会被Agent打破,Agent能够像一个聪明的同事一样,与用户一起合作完成项目。Agent的商业价值已经毋庸置疑,但与此同时,也有越来越多的人担心Agent涉及的核心技术会因为大模型的迭代优化而直接在模型层把Agent的相关功能取代。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

从技术图谱的角度看,大模型能否取代AI Agent?我的答案是否定的。

下面是最有名的一张AI Agent的技术架构图,描述了Agent需要具备的四大核心能力,我们来逐个讨论:

1. Plan(规划)能力。技术上,规划能力看似是大模型和Agent最重合的部分,特别是在o1系列模型发出之后,由于推理有了scaling law,并且在数学能力上有了很大进步,似乎我们就该用大模型的规划能力,但事实上,有两大因素会使得AI Agent 规划能力的发展会和大模型的规划能力不一样,其中,最核心的是成本和响应速度

具体来说,最好的大模型通常也是最贵的,o1模型又进一步提高了模型推理所需要的时间。所以在实际商业场景中,通过工程手段降低对大模型参数和模型推理时间的要求,是实现大模型应用的ROI为正的很重要的因素。本质上就是建立缓存系统能够使得不同复杂度、不同价值的业务问题,能够在合适的成本下被解决,这是AI Agent的规划能力和大模型规划能力的最大区别

第二个因素是个性化的部分,AI Agent的推理可以低成本的用到短期、长期记忆来辅助决策,这使得它能够更有效地利用“系统1/快思考”机制,来得到高质量的答复和响应,这也是Agent和大模型的规划能力不一样的地方。

2. 短时记忆/长时记忆(Short/Long term memory)。记忆是大模型本身不涉及的技术,记忆在应用中需要可修改可解释,大模型是把所有数据都压缩进模型参数中,做不到可修改可解释。而且短时记忆、情景记忆和过程记忆也正是AI Agent能够利用来做到低成本和个性化的很重要的一个抓手。

3. 工具使用(Tool Use)。大模型有个功能叫做function-call,与AI Agent的使用工具的能力相对应。AI Agent可以利用大模型function-call的能力扩展可调用的工具数量,此外,通过“分而治之”的方式,AI Agent可以通过构建分层的意图识别,利用大模型的规划能力进行意图识别、分类,然后在第二层目标处理中,进一步使用大模型的function-call能力,从而达到倍增的工具选择能力。

举个例子,在电商的智能客服场景,我们可以分成售前/售中/售后三类场景,每个场景都配置不同的工具,然后在多轮对话中识别出客户的需求到底是哪一类之后,再进一步的进行规划和工具使用,从而能够满足更多样的场景需求。

4. 行动(Action)。大模型当前直接执行行动的能力仍然偏弱,本质上是和环境互动的能力偏弱。在所谓的Computer-use、Phone-use场景中,在关键的OSWorld测试集下,当前最好的大模型也只有15%的准确率,离人类平均水平的70%的准确率差距极大。所以Agent在这个模块中会有专门的验证和调试模块来保障行动执行的准确率和安全性,这里最核心的是有环境的仿真能力,这也是Agent和大模型不一样的技术路线之一。

大模型和AI Agent完全属于两个不同的品类,一个是思考系统,一个是行动系统,所以并不会由于大模型的迭代优化,而在模型层替代AI Agent的功能。此外,AI Agent有自己的产品价值和技术体系,可以沉淀相关的比较优势。

可以参考下面这张架构图,这些是AI Agent和大模型最大的差异点。

AI Agent是领域驱动的,其中有个最核心的理念叫做“信念”,即对何为真实以及何为有价值的判断。打个比方,就像图书馆里有众多书籍,如果两本书在知识上有冲突,以中国作者写的为最佳答案,还是以美国作者写的为最佳答案,对阅读者后续的规划行动会产生截然不同的影响。

在AI Agent进入到具体企业业务场景,在这些知识面对具体业务决策以及拿到商业上的反馈后,如何总结出适合这家公司或者这个专家的信念体系,就是AI Agent的核心功能。在我看来,最能体现AI Agent厂商核心能力的就是如何把大模型能力和企业内部的私域知识/数据有效结合,用ROI最高的方式去服务企业业务需求。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值