原理:
给出一个数字从小到大排列好的数组,第一步先读取中间的数(用(mid=right+left)/2),看是不是要找的数,如果不是,比较中间的数和要找的数的大小,如果要找的数比中间的数小,那么我们就把搜索的目光转向[0,中间的数-1],在这个缩小了的范围继续重复刚才的步骤,直至找出那个数,如果left>right还没有找到,那么搜索会结束,表面,数组里没有要找的那个数
意义:
二分法比一个一个找要方便的太多了,在100个数字的范围里找一个数,最多只需要7次,而在1百万的量级中,也仅仅只需要20次
代码如下:
#include<stdio.h>
int search(int *b,int len,int k);
int main()
{
int a[12]={-1,0,5,8,13,20,34,15,37,50,88,100};
int k=50; //要找的那个数
int len=sizeof(a)/sizeof(a[0]); //数组的元素数
int ret=search(a,len,k); //引用search函数
printf("%d在a[%d]这里",k,ret);
return 0;
}
int search(int *b,int len,int k)
{
int left=0;
int right=len-1;
while (right>left) /*right在left左边,肯定比left大,要是比left小了,说明在数组里没有那个要找的数,我
们就是要一直找到right比left小为止,所以right>left是循环条件*/
{
int mid=(left+right)/2; //二分法从中间开始找
if (b[mid]==k) // 如果找到了
{
return mid; //把位置的下标return回主函数
break; //然后结束
}else if (b[mid]<k){
left=mid+1; //如果k比mid大,说明k在mid右边,把搜索区域缩小到[left=mid+1,right]
}else{
right=mid-1; //如果k比mid小,说明k在mid左边,把搜索区域缩小到[left,right=mid-1]
}
}
}