C语言二分法搜索

二分查找算法实现与效率分析,

原理:

给出一个数字从小到大排列好的数组,第一步先读取中间的数(用(mid=right+left)/2),看是不是要找的数,如果不是,比较中间的数和要找的数的大小,如果要找的数比中间的数小,那么我们就把搜索的目光转向[0,中间的数-1],在这个缩小了的范围继续重复刚才的步骤,直至找出那个数,如果left>right还没有找到,那么搜索会结束,表面,数组里没有要找的那个数

意义:

二分法比一个一个找要方便的太多了,在100个数字的范围里找一个数,最多只需要7次,而在1百万的量级中,也仅仅只需要20次

代码如下:

#include<stdio.h>

int search(int *b,int len,int k);

int main()
{
	int a[12]={-1,0,5,8,13,20,34,15,37,50,88,100};
	int k=50;  //要找的那个数 
	int len=sizeof(a)/sizeof(a[0]);  //数组的元素数 
	int ret=search(a,len,k);  //引用search函数 
	printf("%d在a[%d]这里",k,ret);
	return 0;
 } 
 
int search(int *b,int len,int k)
{
	int left=0;  
	int right=len-1;
	
	while (right>left)  /*right在left左边,肯定比left大,要是比left小了,说明在数组里没有那个要找的数,我
	                    们就是要一直找到right比left小为止,所以right>left是循环条件*/ 
	{
		int mid=(left+right)/2; //二分法从中间开始找 
		if (b[mid]==k) // 如果找到了 
		{
			return mid;  //把位置的下标return回主函数 
			break;       //然后结束 
		}else if (b[mid]<k){  
			left=mid+1;  //如果k比mid大,说明k在mid右边,把搜索区域缩小到[left=mid+1,right] 
		}else{
			right=mid-1;  //如果k比mid小,说明k在mid左边,把搜索区域缩小到[left,right=mid-1] 
		}
	}	
}

<think>好的,我现在需要帮用户找到关于C语言实现二分法的示例代码和教程。用户提到了之前提供的引用,其中引用[2]、[3]、[4]都包含了相关的代码示例,这可能对用户有帮助。首先,我需要整理这些引用中的信息,看看如何最好地呈现给用户。 首先,引用[2]详细介绍了二分查找的实现,包括代码和注释,这可能适用于数组查找的情况。引用[3]中的代码虽然也是二分查找,但数组并没有排序,这可能是一个问题,因为二分法要求数组是有序的。这里需要指出用户可能需要注意的地方,比如数组必须有序才能正确使用二分法。引用[4]展示了二分法在方程求解中的应用,这扩展了二分法的应用场景,不只是数组查找,还可以用于数值计算。 接下来,我需要将这些内容整合成一个清晰的回答,分步骤说明二分法的实现,并给出不同应用场景的示例代码。例如,可以分成数组查找和方程求解两部分,分别展示代码,并解释关键步骤。同时,需要注意代码的正确性和可读性,可能需要对引用中的代码进行适当的调整,比如修正数组未排序的问题,或者在方程求解中添加注释说明终止条件。 另外,用户可能对二分法的原理和实现步骤不太清楚,需要简要说明二分法的工作原理,比如分而治之的思想,逐步缩小搜索范围。同时,要强调时间复杂度,O(log n)的效率优势,这也是为什么二分法被广泛使用的原因。 还需要考虑用户可能的疑问,比如如何处理重复元素,如何选择中间点,以及如何处理边界条件。例如,在计算mid时,使用(left + right) / 2可能存在整数溢出的风险,更安全的写法是left + (right - left) / 2。但根据引用中的代码,用户提供的示例可能没有考虑这一点,是否需要指出呢?如果用户是初学者,可能暂时不需要涉及太复杂的优化,但作为最佳实践,可以提到这一点。 此外,引用[3]中的数组是静态定义的,并且没有排序,这会导致二分法失效。这里需要指出错误,并给出正确的有序数组示例,避免用户直接复制代码时出现问题。例如,将数组排序后再进行二分查找,或者调整示例中的数组为有序的。 在方程求解的例子中,引用[4]展示了如何用二分法找到方程的根,这里需要解释循环终止条件,比如fabs(f3) >= 1e-5,以及如何根据函数值的符号调整区间。同时,需要检查代码是否存在潜在问题,比如初始区间的选择是否合理,是否有可能遗漏根的情况。 最后,生成相关问题,帮助用户进一步学习,比如二分法的前提条件、时间复杂度、在非数组场景的应用等。这些问题应该覆盖用户可能感兴趣的扩展知识点,促进深入理解。 总结来说,回答的结构应该是:原理简介、数组查找示例(包括正确排序的数组)、方程求解示例、注意事项和常见问题,最后是相关问题。确保代码正确,注释清晰,同时指出潜在的错误和优化点,帮助用户正确理解和应用二分法。</think>以下是关于C语言实现二分法算法的详细说明及示例代码: ### 一、二分法原理 二分法是基于分治思想的算法,适用于**有序数据集合**。通过每次将搜索范围缩小一半,时间复杂度为$O(\log n)$[^2] ### 二、实现步骤 1. 定义搜索区间`[left, right]` 2. 计算中间点`mid = (left + right)/2` 3. 比较目标值与中间值 4. 调整搜索区间边界 5. 重复直至找到目标或区间无效 ### 三、代码实现 #### 1. 数组查找(需有序) ```c #include <stdio.h> int binarySearch(int arr[], int n, int x) { int left = 0, right = n - 1; while (left <= right) { int mid = left + (right - left)/2; // 防溢出写法 if (arr[mid] == x) return mid; if (arr[mid] < x) left = mid + 1; else right = mid - 1; } return -1; } int main() { int arr[] = {2, 5, 8, 12, 16, 23, 38, 56, 72, 91}; // 必须是有序数组 int n = sizeof(arr)/sizeof(arr[0]); int x = 23; int result = binarySearch(arr, n, x); if (result != -1) printf("元素在索引 %d 处", result); else printf("未找到元素"); return 0; } ``` #### 2. 方程求根(以$2x^3-4x^2+3x-6=0$为例) ```c #include <stdio.h> #include <math.h> #define EPSILON 1e-6 // 精度控制 double f(double x) { return 2*pow(x,3) - 4*pow(x,2) + 3*x - 6; } int main() { double a = -10, b = 10; if (f(a)*f(b) >= 0) { // 初始区间需满足f(a)f(b) < 0 printf("区间内无解或有偶数个根"); return 0; } while (fabs(b - a) > EPSILON) { double c = (a + b)/2; if (f(c) == 0.0) break; else if (f(c)*f(a) < 0) b = c; else a = c; } printf("近似根为: %.5f", (a + b)/2); return 0; } ``` ### 四、关键注意 1. 数组必须预先排序(升序或降序) 2. 方程求根时需确保$f(a)$与$f(b)$异号[^4] 3. 中间值计算推荐使用`left + (right - left)/2`避免整数溢出
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值