1. 背景介绍
1.1 强化学习概述
强化学习(Reinforcement Learning,RL)是机器学习的一个重要分支,它关注的是智能体(Agent)如何在与环境的交互中学习到最佳策略,以最大化累积奖励。不同于监督学习和非监督学习,强化学习没有明确的标签或数据,而是通过不断尝试和反馈来学习。
1.2 Q-learning 算法
Q-learning 算法是一种基于值的强化学习算法,它通过学习一个状态-动作值函数(Q 函数)来评估在每个状态下执行每个动作的预期回报。Q 函数的值表示在当前状态下执行某个动作后,所能获得的未来奖励的期望值。通过不断更新 Q 函数,智能体可以学习到最佳策略,即在每个状态下选择能够获得最大预期回报的动作。
2. 核心概念与联系
2.1 马尔可夫决策过程(MDP)
马尔可夫决策过程(Markov Decision Process,MDP)是强化学习问题的数学模型,它描述了智能体与环境之间的交互过程。MDP 由以下几个要素组成:
- 状态空间(S)<

本文深入探讨了强化学习中的Q-learning算法,从基本概念如MDP和Q函数出发,详细解释了算法原理和Q函数更新公式。通过Python代码实例展示了算法的实现过程,并讨论了其在游戏、机器人控制等领域的应用。同时,文章还提到了Q-learning的挑战,如状态空间过大、奖励稀疏和探索-利用困境,并给出了相关解决方案。
订阅专栏 解锁全文
358

被折叠的 条评论
为什么被折叠?



