从零开始大模型开发与微调:BERT预训练任务与微调
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
近年来,自然语言处理(NLP)领域取得了长足的进步,尤其是预训练大模型的出现,如BERT(Bidirectional Encoder Representations from Transformers)、GPT-3等,使得NLP任务取得了显著的性能提升。然而,这些大模型的开发与微调仍然面临着许多挑战,包括模型构建、数据预处理、超参数调整等。本文将深入探讨从零开始大模型开发与微调的过程,以BERT预训练任务与微调为例,为您呈现NLP领域的这一前沿技术。
1.2 研究现状
目前,大模型开发与微调的研究主要集中在以下几个方面:
- 预训练模型: BERT、GPT-3等预训练模型在NLP任务上取得了显著的成果,但这些模型的开发需要大量的计算资源和数据。
- 数据预处理: 大模型需要大量的文本数据进行预训练,数据预处理的质量直接影响模型的性能。

订阅专栏 解锁全文


被折叠的 条评论
为什么被折叠?



