从零开始大模型开发与微调:BERT预训练任务与微调

从零开始大模型开发与微调:BERT预训练任务与微调

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

近年来,自然语言处理(NLP)领域取得了长足的进步,尤其是预训练大模型的出现,如BERT(Bidirectional Encoder Representations from Transformers)、GPT-3等,使得NLP任务取得了显著的性能提升。然而,这些大模型的开发与微调仍然面临着许多挑战,包括模型构建、数据预处理、超参数调整等。本文将深入探讨从零开始大模型开发与微调的过程,以BERT预训练任务与微调为例,为您呈现NLP领域的这一前沿技术。

1.2 研究现状

目前,大模型开发与微调的研究主要集中在以下几个方面:

  1. 预训练模型: BERT、GPT-3等预训练模型在NLP任务上取得了显著的成果,但这些模型的开发需要大量的计算资源和数据。
  2. 数据预处理: 大模型需要大量的文本数据进行预训练,数据预处理的质量直接影响模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值