will_liam_2024
码龄2年
关注
提问 私信
  • 博客:11,196
    11,196
    总访问量
  • 10
    原创
  • 170,120
    排名
  • 160
    粉丝
  • 学习成就

个人简介:个人学习的过程中顺便留下一些记录,如果对你有帮助,欢迎关注

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2023-02-28
博客简介:

2301_76739570的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    111
    当月
    0
个人成就
  • 获得222次点赞
  • 内容获得5次评论
  • 获得104次收藏
创作历程
  • 10篇
    2024年
成就勋章
TA的专栏
  • 书生浦语大模型实战营笔记
    6篇
  • 大模型量化
    1篇
  • 工业界大模型概览
    2篇
  • 大模型推荐技术
    1篇
兴趣领域 设置
  • 人工智能
    语言模型智慧城市图像处理gpt-3chatgptDALL·E 2文心一言
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

181人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

AWQ:Activation-aware Weight Quantization 用于LLM量化与加速-(1)背景与原理

AWQ原理介绍,大模型量化,怎样在更小的模型下,保留最好的效果
原创
发布博客 2024.04.28 ·
2232 阅读 ·
38 点赞 ·
1 评论 ·
10 收藏

微软大模型phi-3速览-3.7B比llama-3 8B更好?

phi-3 3.8B模型媲美chatgpt、手机可以部署、但是仍然有弱点需要提升改进。
原创
发布博客 2024.04.25 ·
1668 阅读 ·
31 点赞 ·
1 评论 ·
12 收藏

快读论文-利用大模型做富文本推荐

本文设计了一个新颖的框架,用于利用大型语言模型进行文本丰富的序列推荐(LLM-TRSR)。该方法主要包括以下步骤:首先,将用户的历史行为序列提取并转换为一段长文本,然后将该长文本分割成几个区块,确保每个区块都能被大型语言模型完全处理。接着,提出基于 LLM 的摘要器来全面考虑这些区块,以得出用户偏好的摘要。同理看图:既然可以使用cnn、rnn接口来提取用户历史,后续能否用模拟attention的方法来提取用户历史特征?
原创
发布博客 2024.04.22 ·
1194 阅读 ·
19 点赞 ·
0 评论 ·
19 收藏

OpenCompass司南大模型评测体系-书生·浦语大模型第二期实战营第七课笔记&作业

大模型评测,OpenCompass,司南,大模型榜单,评测
原创
发布博客 2024.04.20 ·
1053 阅读 ·
10 点赞 ·
1 评论 ·
8 收藏

Meta Llama3简单速览

北京时间4月19号凌晨,Meta 发布了Llama3。下面,让我们根据官方报告,深入了解这一AI领域的重要更新。
原创
发布博客 2024.04.19 ·
1285 阅读 ·
40 点赞 ·
1 评论 ·
13 收藏

智能体agent学习--书生·浦语大模型第二期实战营第六课笔记&作业

AgentLego 是一个提供了多种开源工具 API 的多模态工具包,旨在像是乐高积木一样,让用户可以快速简便地拓展自定义工具,从而组装出自己的智能体。通过 AgentLego 算法库,不仅可以直接使用多种工具,也可以利用这些工具,在相关智能体框架(如 Lagent,Transformers Agent 等)的帮助下,快速构建可以增强大语言模型能力的智能体。:根据输入的任务,智能体自动选择一个合适的工具来执行该任务。:根据memory的输入,和上一步执行的结果,进行下一步任务的创建。
原创
发布博客 2024.04.18 ·
868 阅读 ·
25 点赞 ·
1 评论 ·
8 收藏

大模型与多模态模型微调--书生·浦语大模型第二期实战营第四课笔记&作业

上海人工智能实验室,大模型配套体系,模型训练工具xtuner
原创
发布博客 2024.04.14 ·
805 阅读 ·
20 点赞 ·
0 评论 ·
8 收藏

大模型部署与推理-基于LMDeploy-书生·浦语大模型第二期实战营第五课笔记&作业

前向推理需要的计算量公式Cforward​2∗N2∗nlayer​∗nctx​∗dattn​– N是参数量,nlayer​nctx​dattn​分别代表层数,上下文长度,注意力维度kv cache显存占用公式Mkvcache​4∗b∗nlayer​∗dattn​∗sn–bnlayer​dattn​。
原创
发布博客 2024.04.10 ·
832 阅读 ·
27 点赞 ·
0 评论 ·
11 收藏

RAG范式与快速搭建套件茴香豆--书生·浦语大模型第二期实战营第三课笔记&作业

包括朴素RAG(Naive RAG)、进阶RAG(Advanced RAG)和模块化RAG(Modular RAG)。朴素RAG:这是RAG最早的方法论,主要包含索引(indexing)、检索(retrieval)和生成(generation)三个步骤。它通过将文档分割成小块,编码为向量,并存储在向量数据库中,以便在接收到用户查询时进行高效的相似性搜索。进阶RAG:为了克服朴素RAG的局限性,进阶RAG引入了特定的改进措施,包括预检索和后检索策略。
原创
发布博客 2024.04.07 ·
974 阅读 ·
9 点赞 ·
0 评论 ·
10 收藏

大模型Demo初印象--书生·浦语大模型第二期实战营第二课笔记&作业

由书生·浦语角色扮演小组长【那路】为大家带来【轻松玩转书生·浦语大模型趣味 Demo】课程~玩转书生·浦语【智能对话】、【智能体解应用题】、【多模态理解及图文创作】等趣味 Demo。
原创
发布博客 2024.04.01 ·
246 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏