快读论文-利用大模型做富文本推荐 本文设计了一个新颖的框架,用于利用大型语言模型进行文本丰富的序列推荐(LLM-TRSR)。该方法主要包括以下步骤:首先,将用户的历史行为序列提取并转换为一段长文本,然后将该长文本分割成几个区块,确保每个区块都能被大型语言模型完全处理。接着,提出基于 LLM 的摘要器来全面考虑这些区块,以得出用户偏好的摘要。同理看图:既然可以使用cnn、rnn接口来提取用户历史,后续能否用模拟attention的方法来提取用户历史特征?
智能体agent学习--书生·浦语大模型第二期实战营第六课笔记&作业 AgentLego 是一个提供了多种开源工具 API 的多模态工具包,旨在像是乐高积木一样,让用户可以快速简便地拓展自定义工具,从而组装出自己的智能体。通过 AgentLego 算法库,不仅可以直接使用多种工具,也可以利用这些工具,在相关智能体框架(如 Lagent,Transformers Agent 等)的帮助下,快速构建可以增强大语言模型能力的智能体。:根据输入的任务,智能体自动选择一个合适的工具来执行该任务。:根据memory的输入,和上一步执行的结果,进行下一步任务的创建。
大模型部署与推理-基于LMDeploy-书生·浦语大模型第二期实战营第五课笔记&作业 前向推理需要的计算量公式Cforward2∗N2∗nlayer∗nctx∗dattn– N是参数量,nlayernctxdattn分别代表层数,上下文长度,注意力维度kv cache显存占用公式Mkvcache4∗b∗nlayer∗dattn∗sn–bnlayerdattn。
RAG范式与快速搭建套件茴香豆--书生·浦语大模型第二期实战营第三课笔记&作业 包括朴素RAG(Naive RAG)、进阶RAG(Advanced RAG)和模块化RAG(Modular RAG)。朴素RAG:这是RAG最早的方法论,主要包含索引(indexing)、检索(retrieval)和生成(generation)三个步骤。它通过将文档分割成小块,编码为向量,并存储在向量数据库中,以便在接收到用户查询时进行高效的相似性搜索。进阶RAG:为了克服朴素RAG的局限性,进阶RAG引入了特定的改进措施,包括预检索和后检索策略。
大模型Demo初印象--书生·浦语大模型第二期实战营第二课笔记&作业 由书生·浦语角色扮演小组长【那路】为大家带来【轻松玩转书生·浦语大模型趣味 Demo】课程~玩转书生·浦语【智能对话】、【智能体解应用题】、【多模态理解及图文创作】等趣味 Demo。