二叉树(Java)

一.1.树形结构概念的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

1.有一个特殊的结点,称为根结点,根结点没有前驱结点
2.除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合Ti (1 <= i <=
m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
3.树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

1.2.重要概念 

结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6
树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6
叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
根结点:一棵树中,没有双亲结点的结点;如上图:A
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推

树的高度或深度:树中结点的最大层次; 如上图:树的高度为4

树的以下概念只需了解,在看书时只要知道是什么意思即可:

非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等节点为分支结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>=0)棵互不相交的树组成的集合称为森林

这里还需要注意度,度在二叉树中是一个结点的概念,表示一个节点拥有子节点的数量.

1.度为0的节点:没有子节点的节点,称之叶子节点或终端节点

2.度为1的节点:只有一个子节点的节点(这个节点可左可右)

3.度为2的节点:有两个子节点的节点(既有左子节点也有右子节点)

2.二叉树

2.1.二叉树的概念

一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 或者是由一个根节点加上两棵别称为左子树右子树的二叉树组成。

从上图可以看出:
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

 2.2 两种特殊的二叉树

1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是,则它就是满二叉树。(度要么是0要么是2)

2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。(在完全二叉树中除了最低层的节点可能没填满,其余每层节点数都达到最大值,并且最后一层没填满的节点都集中在最左边)

2.3 二叉树的性质

1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有(i>0)个结点
2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是(k>=0)
3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
4. 具有n个结点的完全二叉树的深度k为上取整
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
.若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
.若2i+1<n,左孩子序号:2i+1,否则无左孩子
.若2i+2<n,右孩子序号:2i+2,否则无右孩子

2.4 二叉树的存储

二叉树的存储结构分为:顺序存储(堆)和类似于链表的链式存储

(顺序存储后面说)

二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:

// 孩子表示法
class Node {
   int val;// 数据域
   Node left;// 左孩子的引用,常常代表左孩子为根的整棵左子树
   Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}



// 孩子双亲表示法(后面说)
class Node {
   int val;// 数据域
   Node left;// 左孩子的引用,常常代表左孩子为根的整棵左子树
   Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
   Node parent;    // 当前节点的根节点
}

孩子双亲表示法后序在平衡树位置介绍,这里用孩子表示法来构建二叉树。

 2.5.二叉树的创建

这里我们以穷举的方式创建一个二叉树!先学会二叉树的遍历操作,再做其他的.

这里以如下图为例进行操作

public class BinaryTree {
    //二叉树是由若干个节点组成
    static class TreeNode {
        //孩子表示法

        public char val;
        public TreeNode left;
        public TreeNode right;

        public TreeNode(char val) {
            this.val = val;
        }
    }

        //接下来创建这棵树
        //public TreeNode root;//根节点(这里可写可不写,目前我们不写)
        //这里创建一颗二叉树,创建成功之后,返回根节点
        public TreeNode createTree() {
            TreeNode A = new TreeNode('A');
            TreeNode B = new TreeNode('B');
            TreeNode C = new TreeNode('C');
            TreeNode D = new TreeNode('D');
            TreeNode E = new TreeNode('E');
            TreeNode F = new TreeNode('F');
            TreeNode G = new TreeNode('G');
            TreeNode H = new TreeNode('H');

            A.left = B;
            A.right = C;
            B.left = D;
            B.right = E;
            C.left = F;
            C.right = G;
            E.right = H;

            return A;//根节点是A,这里返回A
        }

测试

public class Text {
    public static void main(String[] args) {
        BinaryTree binaryTree=new BinaryTree();
        //这里返回的是一个根节点,根节点是BinaryTree.TreeNode类型,这里定义一个这样类型的root
        BinaryTree.TreeNode root=binaryTree.createTree();
       
    }
}
2.6二叉树的遍历

1.前序遍历, :前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。

2.中序遍历:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。

3.后序遍历:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。

如下图: 

前序遍历结果:1 2 3 4 5 6
中序遍历结果:3 2 1 5 4 6
后序遍历结果:3 1 5 6 4 1

2. 层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

注意:如果给一个前序遍历和后续遍历,不能创建一个二叉树,因为前序和后序遍历确定的都是根,不能确定左和右.

代码如下:

1.前序遍历

// 前序遍历(根左右)
        void preOrder(TreeNode root){
            if(root == null) {
                return;
            }
            System.out.print(root.val+" ");
            preOrder(root.left);
            preOrder(root.right);
    }

2.中序遍历 

 // 中序遍历  -》 左根右
    void inOrder(TreeNode root){
        if(root == null) {
            return;
        }
        inOrder(root.left);
        System.out.print(root.val+" ");
        inOrder(root.right);
    }

3.后序遍历 

 // 后序遍历  -》 左右根
    void postOrder(TreeNode root){
        if(root == null) {
            return;
        }
        postOrder(root.left);
        postOrder(root.right);
        System.out.print(root.val+" ");

测试结果: 

 所有代码如下:

public class BinaryTree {
    //二叉树是由若干个节点组成
    static class TreeNode {
        //孩子表示法

        public char val;
        public TreeNode left;
        public TreeNode right;

        public TreeNode(char val) {
            this.val = val;
        }
    }

        //接下来创建这棵树
        //public TreeNode root;//根节点(这里可写可不写,目前我们不写)
        //这里创建一颗二叉树,创建成功之后,返回根节点
        public TreeNode createTree() {
            TreeNode A = new TreeNode('A');
            TreeNode B = new TreeNode('B');
            TreeNode C = new TreeNode('C');
            TreeNode D = new TreeNode('D');
            TreeNode E = new TreeNode('E');
            TreeNode F = new TreeNode('F');
            TreeNode G = new TreeNode('G');
            TreeNode H = new TreeNode('H');

            A.left = B;
            A.right = C;
            B.left = D;
            B.right = E;
            C.left = F;
            C.right = G;
            E.right = H;

            return A;//根节点是A,这里返回A
        }

        // 前序遍历(根左右)
        void preOrder(TreeNode root){
            if(root == null) {
                return;
            }
            System.out.print(root.val+" ");
            preOrder(root.left);
            preOrder(root.right);
    }
    // 中序遍历  -》 左根右
    void inOrder(TreeNode root){
        if(root == null) {
            return;
        }
        inOrder(root.left);
        System.out.print(root.val+" ");
        inOrder(root.right);
    }


    // 后序遍历  -》 左右根
    void postOrder(TreeNode root){
        if(root == null) {
            return;
        }
        postOrder(root.left);
        postOrder(root.right);
        System.out.print(root.val+" ");
    }
}

2.6.1这里我们上一个难度:

二叉树的前序遍历

 

 如上我们通过public List<Integer> preorderTraversal(TreeNode root)这段代码可以看出,我们要把前序遍历的结果存到List当中,这里我们应该怎们做呢?

代码如下:

class Solution {
    List<Integer> ret = new ArrayList<>();
    public List<Integer> preorderTraversal(TreeNode root) {
        if(root == null) {
            return ret;
        }
        ret.add(root.val);
        preorderTraversal(root.left);
        preorderTraversal(root.right);
        return ret;
    }
    }
}

 如上这样写没有问题,但是这里我们就要思考一个问题,上面public List<Integer> preorderTraversal(TreeNode root)有返回值,但是我们上面写的没有用到返回值,那我们这里如何合理的利用这个返回值呢?

 正确代码如下:

class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
   //如果上面的List为空,就把他定义在里面,每次add list就好
        List<Integer> list = new ArrayList<>();
        if(root == null) {
            return list;
        }
        list.add(root.val);
        List<Integer> leftTree = preorderTraversal(root.left);
        list.addAll(leftTree);
        List<Integer> rightTree = preorderTraversal(root.right);
        list.addAll(rightTree);
        return list;
}
}

具体思路如下:

2.7.二叉树的基本操作
// 获取树中节点的个数
int size(Node root);

// 获取叶子节点的个数
int getLeafNodeCount(Node root);

// 子问题思路-求叶子结点个数

// 获取第K层节点的个数
int getKLevelNodeCount(Node root,int k);

// 获取二叉树的高度
int getHeight(Node root);

// 检测值为value的元素是否存在
Node find(Node root, int val);

//层序遍历
void levelOrder(Node root);

// 判断一棵树是不是完全二叉树
boolean isCompleteTree(Node root);

1.

// 获取树中节点的个数
int size(Node root);

这里我们怎么知道一棵树有多少个节点呢?该如何去计算呢?

这个时候我们就要想到我们上面说的前中后序遍历,我们所有二叉树的题都是围绕着遍历来展开的.

这里我们就要想,这里不管他是前序遍历还是中序遍历,只要遍历到节点,就让计数器加加.

这里看个最简单的写法:

public int nodeSize;
    // 获取树中节点的个数
    int size(TreeNode root) {
        if(root == null) {
            return 0;
        }
        nodeSize++;//root不为空,加加
        size(root.left);
        size(root.right);
        return nodeSize;
    }

这里再来看下用子问题(递归写法)的解决思路来写这个代码(和如上2.6.1的原理一样,就是用size的返回值int的方法):

这里我们了解一下什么是子问题解决思路:

整棵树的节点个数=左子树的节点个数+右子树的节点个数+1

1.左子树的节点个数=左子树的左子树的节点个数+左子树的右子树的节点个数

2.右子树的节点个数=右子树的左子树的节点个数+右子树的右子树的节点个数

代码如下:

//子问题的思路解决
    int size2(TreeNode root) {
        if(root == null) {
            return 0;
        }
        return size2(root.left)+size2(root.right)+1;
    }

结果如下:

思维图(递归的本质):

2.

// 获取叶子节点的个数
int getLeafNodeCount(Node root);

和上面一样,如果按照

遍历思路解决:只需要按照某种遍历方式,遍历到某个节点,判断是不是叶子节点,如果是就计数器加加

如果按照子问题思路:整棵树的叶子=左子树的叶子+右子树的叶子

遍历思路代码如下:

 public int leafSize;
    // 获取叶子节点的个数
    int getLeafNodeCount1(TreeNode root){
        if(root == null) {
            return 0;
        }
        if(root.left == null && root.right == null) {
            leafSize++;
        }
        getLeafNodeCount1(root.left);
        getLeafNodeCount1(root.right);
        return leafSize;
    }

子问题解决思路:

int getLeafNodeCount(TreeNode root){
        if(root == null) {
            return 0;
        }
        if(root.left == null && root.right == null) {
            return 1;
        }
        return getLeafNodeCount(root.left)
                + getLeafNodeCount(root.right);

    }

结果如下:

思维图: 

接下来我们以子问题来写代码. 

 3.

// 获取第K层节点的个数
int getKLevelNodeCount(Node root,int k);

思路:

整棵树的第k层多少个节点=左子树的第k-1层节点+右子树的第k-1层节点

以上图为例:

A的第3层=A的左子树的第二层+A的右子树的第2层

A的左子树的第二层=A左树的左树的第一层+A左树的右树的第一层

如下:

代码如下:

// 获取第K层节点的个数
    int getKLevelNodeCount(TreeNode root,int k) {
        if(root == null) {
            return 0;
        }
        if(k == 1) {
            return 1;
        }
        return getKLevelNodeCount(root.left,k-1) +
                getKLevelNodeCount(root.right,k-1);
    }

结果如下: 

4.

// 获取二叉树的高度
int getHeight(Node root);

高度指二叉树最大的层数,而这里求的高度其实就是左树高度和右树高度的最大值

整棵树的高度=左子树的高度和右子树的高度的最大值+1

代码如下:

// 获取二叉树的高度 时间复杂度O(N)

    1.第一种情况
    int getHeight(TreeNode root) {
        if(root == null) {
            return 0;
        }
        int leftHeight = getHeight(root.left);
        int rightHeight = getHeight(root.right);

        return leftHeight > rightHeight ? leftHeight+1:
                rightHeight+1;
    }






    2.第二种情况
    注意:这个代码在(力扣上面:题:二叉树的最大深度)会出现超出时间限制报错,因为这个递归太多了,所以上面 
    代码比较简洁


    int getHeight2(TreeNode root) {
        if(root == null) {
            return 0;
        }

        return getHeight2(root.left) > getHeight2(root.right)
                ? getHeight2(root.left)+1:
                getHeight2(root.right)+1;
    }

结果如下: 

5.

// 检测值为value的元素是否存在
Node find(Node root, int val);

这里首先判断这颗树是否是空树,如果不是就看根节点是不是,不是继续执行,看左子树是不是,如果是,返回.如果不是接着看右子树.

代码如下:

// 检测值为value的元素是否存在
    TreeNode find(TreeNode root, char val) {
        if(root == null) {
            return null;
        }

        if(root.val == val) {
            return root;
        }
        TreeNode ret1 = find(root.left,val);
        if(ret1 != null) {
            return ret1;//不去右边了
        }

        TreeNode ret2 = find(root.right,val);
        if(ret2 != null) {
            return ret2;
        }

        return null;
    }


这里需要注意的是,如果找到了要找的这个值,就直接将这个值返回,不会再往后走了,也不去树的另一边了

6.

//层序遍历
void levelOrder(Node root);

层序遍历是从上到下,从左到右依次遍历.

这里问题是,从上到下基本上前序,中序,后序本质上都是.但是这里怎样才能做到从左到右呢?

以上图为例,很简单,这里定义一个队列就好,再定义一个cur,先把A入队,队列不为空,出A,把A给到cur,然后打印A.然后入队A的左树B,和A的右树C,队列不为空,然后出B,把B给到cur,然后打印B,,然后再入队B的左树D,和B的右树E,队列不为空,出C,后面依次类推,最后队列为空了,就从左到右打印了这棵树

代码如下:

//层序遍历
    void levelOrder(TreeNode root) {
        if(root == null) {
            return;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            TreeNode cur = queue.poll();
            System.out.print(cur.val+" ");

            if(cur.left != null) {
                queue.offer(cur.left);
            }
            if(cur.right != null) {
                queue.offer(cur.right);
            }
        }
    }

结果如下:

 

7.

// 判断一棵树是不是完全二叉树
boolean isCompleteTree(Node root);

判断一棵树是不是二叉树,我们可以利用层序遍历的思路.

思路和上面差不多,只不过这里当队列中遍历之后出的是null,且队列中全是null的时候,说明他就是一颗完全二叉树(如下第一幅图).而当遍历之后弹出的是null,队列中既有null,也有非null的值,就说明他不是一颗完全二叉树(如下第二幅图).

代码如下:

 // 判断一棵树是不是完全二叉树
    boolean isCompleteTree(TreeNode root) {
        if(root == null) {
            return true;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);

        while (!queue.isEmpty()) {
            TreeNode cur = queue.poll();
            if(cur != null) {
                queue.offer(cur.left);
                queue.offer(cur.right);
            }else {
                break;//结束这个循环
            }
        }
        //需要判断队列当中 是否有非空的元素
        while (!queue.isEmpty()) {
            //一个元素 一个元素 出队来判断 是不是空
            TreeNode tmp = queue.peek();
            if(tmp == null) {
                queue.poll();
            }else {
                return false;
            }
        }
        return true;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值