题目描述
一个整数如果按从低位到高位的顺序,奇数位(个位、百位、万位 · · · )上的数字是奇数,偶数位(十位、千位、十万位 · · · )上的数字是偶数,我们就称之为“好数”。给定一个正整数 N,请计算从 1 到 N 一共有多少个好数。
输入格式
一个整数 N。
输出格式
一个整数代表答案。
样例输入
24
样例输出
7
提示
对于第一个样例,24 以内的好数有 1、3、5、7、9、21、23,一共 7 个。试题 C: 好数 4第十五届蓝桥杯大赛软件赛省赛 C/C++ 大学 B 组【评测用例规模与约定】对于 10% 的评测用例,1 ≤ N ≤ 100。对于 100% 的评测用例,1 ≤ N ≤ 10^7。
#include<stdio.h>
#define ODD 1 //奇数
#define EVEN 2 //偶数
int count=0;
//判断一个数是奇数还是偶数
int judge_OE(int number){
int Remainder = number%2;
return (Remainder==0)?EVEN:ODD;
}
//判断一个数是否是好数
int judge_hao(int number){
int flag1,flag2=ODD; //奇偶标志位,flag1判断数位上的数,flag2判断数位
int num2; //获取个位数
//判断循环
while(number!=0){
num2=number%10; //取个位上的数
flag1=judge_OE(num2);
if(flag1!=flag2){ //不符合条件
return 0;
}
number/=10;
//标志位flag2转换
if(flag2==ODD){
flag2=EVEN;
}else{
flag2=ODD;
}
}
//结束判断,符合条件
count++;
return 0;
}
int main()
{
int N;
scanf("%d",&N);
for(int i=1;i<=N;i++){
//剪枝
if(judge_OE(i%10)==EVEN){
continue;
}
judge_hao(i);
}
printf("%d",count);
return 0;
}