目录
前言
我们实现了softmax回归之后,对实现模型的流程已经轻车熟路了。
所以没有什么好说的,直接开干。
一、加载数据集
加载数据集的我封装在了FashionMINISTDataLoader类中了,想要代码的,去看我写的3.5节,数据加载功能类。
from load_data_fashion_mnist import FashionMNISTDataLoader
fashion_minist = FashionMNISTDataLoader(batch_size=256)
train_iter, test_iter = fashion_minist.create_dataloaders()
二、初始化模型参数
#初始化参数
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2]
上面的参数num_niddens代表隐藏神经元的数目
第一层(输入层→隐藏层):
-
W1: 权重矩阵,形状为[784, 256]-
torch.randn(): 从标准正态分布随机初始化 -
* 0.01: 缩小初始值,避免梯度爆炸 - <
-

最低0.47元/天 解锁文章

3万+

被折叠的 条评论
为什么被折叠?



