投毒/后门攻击

定义:

        投毒攻击是一种通过恶意手段向系统、数据中植入有害元素,从而破坏其正常功能、窃取信息或达成其他恶意目的的攻击方式。其本质是通过篡改训练数据或模型参数,使模型学习到错误模式,导致其在预测时输出错误结果。利用机器学习模型对数据的 “依赖性”,通过注入精心设计的 “毒数据” 破坏模型的泛化能力。

分类:

1.数据投毒攻击

        修改现有的样本特征或标签,误导模型学习错误关联。这种攻击可以是无目标的,降低模型整体性能,也可以是有目标的,使模型对特定输入产生错误输出。

        攻击手段:

                改变数据标签,“猫”改成“狗”等,破坏标签和特征的一致性;

                特征篡改,在图像中加入噪声,文本中加入恶意词汇,使模型误判特征;

                数据注入,生成大量虚假数据,淹没真实数据,使机器进行错误学习。

2.后门攻击

        在数据中植入“触发器”,如图像中的彩色块,文本中的关键字,当模型遇到触发器时,输出特定结果。(也是另一种形式的数据投毒)

        攻击步骤:

                ①设计触发器

                ②构造样本,将触发特征与目标输出进行绑定

                ③注入数据进行训练。

3.模型攻击

         攻击者通过操纵模型的训练算法或参数,干扰模型的学习过程。攻击者上传篡改后的模型参数,污染全局模型。过程可能不涉及直接篡改训练数据,攻击的焦点是直接针对模型的训练过程。

通常在联邦学习,分布式学习中。

         联邦学习中,恶意客户端故意上传偏离真实数据分布的参数。

         分布式训练中,攻击者控制部分节点,注入梯度噪声或错误参数。

联邦学习中的投毒攻击:

        主要通过客户端的操作来实现。

        数据投毒:操纵客户端的本地训练数据来干扰全局模型的训练过程。

        后门攻击:恶意客户端在训练数据中加入触发器,将带有后门的本地模型发送给服务器,使得全局模型在聚合过程中继承这些后门。

        模型投毒:操纵客户端的本地模型更新来干扰全局模型的训练过程。

防御机制:

        数据清洗与异常检测:识别离群样本,过滤毒样本。

        数据增强与净化:在数据中添加良性扰动,进行鲁棒性训练。利用无标签数据学习通用特征

        进行对抗训练:增强模型抗干扰能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有点不太正常

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值