【C语言】浮点型在内存中的存储

文章详细阐述了浮点数在内存中的存储方式,遵循IEEE754标准。内容包括浮点数的二进制表示形式,S(符号位)、M(有效数字)、E(指数)的存储规则,以及针对32位和64位浮点数的差异。文章通过代码示例解释了内存读写过程,展示了如何从整型转换为浮点型,以及不同情况下指数的处理方式,如全0和全1时的特殊含义。
摘要由CSDN通过智能技术生成

整型在内存中的存储在前面的博客我们已经讲解过了,👉http://t.csdn.cn/VCBq4


目录

代码引入:

浮点型在内存中的表示方法:

S、M、E在内存中是如何存储的:

IEEE 754对有效数字M、指数E的特别规定:

有效数字M:

指数E:

存入内存:

读取内存:

开头代码的解释:

第一个打印解释略。

第二个打印:

第三个打印:

第四个打印略。


代码引入:

关于浮点型的存储,我们不妨从一段代码引入:

#include<stdio.h>

int main()
{
	int n = 9;
	float* pfloat = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*pfloat的值为:%f\n", *pfloat);

	*pfloat = 9.0;
	printf("num的值为:%d\n", n);
	printf("*pfloat的值为:%f\n", *pfloat);
	return 0;
}

如果你并不了解浮点型在内存中的存储,你期望输出的结果可能是:9,9.0,9,9.0。

但实际上输出的内容是:

b44c88c301a34c88a18b064f768ada04.png

那么为什么?接下来我们就来学习浮点型在内存中的存储方式,具体解释在文章末尾。


浮点型在内存中的表示方法:

根据国际标准IEEE(电气和电子工程协会) 754规定,二进制的浮点数V可以表示成以下形式:

85a1c55e452f4209a980d89e935040f1.png

 例如:

ec438880996541e0abd3c3da4ab42a60.png

 按照IEEE 754的规定,那么该二进制数可以表示为:

5af17dca4dbb494cbeb5c273b8b43b8d.png

 也就是说,在计算机内存中,浮点数的存储实际上是以S、M、E三个参数的形势来存储的,任何一个二进制浮点数都可以用S、M、E这三个数来表示。

接下来我们需要了解的就是S、M、E这三个参数在内存中又是如何存储的。


S、M、E在内存中是如何存储的:

根据IEEE 754规定:对于32位的浮点数,最高1位是符号位S,接着8位是指数E,剩下的23位为有效数字M(多的位数补0)

d55e620621d2481f9a17a0c28b517230.png

 对于64位的浮点数,最高1位是符号位S,接着11位是指数E,剩下的52位为有效数字M(多的位数补0)

55da449d8a3a42f98de0b0beae440a1b.png


IEEE 754对有效数字M、指数E的特别规定:

有效数字M:

前面说过,M的取值范围是【1,2),也就是说M的大致格式一定是1.xxxxxx,所以在IEEE 754中规定,存入M时:将M的第一位1舍去,我们默认他就是为1,只保留后面的xxxxxx;读取M时:再将第一位的1加上去,这样做可以节省一位有效数字,存储的精度提高了。

指数E:

存入内存:

指数E规定的是无符号整数,但是在科学计数法中指数可以为负,IEEE 754是这样解决的,它规定E在存入内存时不真正存入他的真实值,而是将E加上一个中间数再存入内存,如果存储的是单精度浮点数,E占8位(0~255),那么要加的中间数就是127,如果是双精度浮点数,E占11位(0~2047),那么要加的中间数就是1023。

比如当指数E为10的时候,若该数是一个单精度浮点数,E在存入内存是,存入的实际为10+127=137,即10001001。

读取内存:

当E不全为0或不全为1(普遍情况):

存入内存的逆过程,即将E在内存中的值再减去中间数。

当E全为0:

E的值规定为1-127(或者1-1023)即为真实值,并且:有效数字M不再补1,取出的值以0.xxxxxx表示,目的是可以表示+-0,以及很小的数。

当E全为1:

如果此时有效数字M全为0,表示+-无穷大(+-取决与符号位S)。

开头代码的解释:

第一个打印解释略。

第二个打印:

根据上面所学内容,我们将9以单精度浮点数读取,看看是什么结果,首先因为9是整型,他存储在内存中的二进制序列(补码)为:

0000 0000 0000 0000 0000 0000 0000 1001,我们将它放入单精度浮点数存储模型:

3728a4e63fc04d5dafb96aace64c6d37.png

 我们发现指数位E全为0,也就满足了我们前面所将E全为0的情况,那么

此时取出E时,E的值就为-126,也就是(-1)^0 * 1.001 * 2^(-126),那么此时这个数是一个非常小的接近于0的正数,所以屏幕上输出的为0.000000。

第三个打印:

首先9.0在内存中的存储为(-1)^0 * 1.001 *2^3,我们同样将它放入单精度浮点数存储模型(E不要忘了加中间数,M不要忘了去掉1):

ac3f42ab9bba49b2ba4d1158c01fb1c2.png

 在printf()函数中,我们取出的是以整型方式取出的,所以该二进制序列转化为十进制的值正是1091567616。

第四个打印略。

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coder_FF

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值