💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
一、引言
随着可再生能源的快速发展,尤其是风电的大规模并网,电力系统调度面临的不确定性显著增加。为了应对这些不确定性,本文引入模糊机会约束规划方法,将传统确定性约束松弛为含有模糊变量的系统约束,以优化电力系统的低碳调度。本研究综合考虑了储能、风电、光伏、火电及水电等多种能源形式,旨在解决目标函数中的分类特征约束问题、非线性约束/目标的线性转化问题,并考虑了机组的启停时间约束。
二、系统模型与约束条件
- 目标函数
- 运行成本:包括燃料成本、维护成本等。
- 弃风弃光成本:由于风电和光伏出力不确定性导致的能源浪费成本。
- 碳成本:根据各机组的碳排放量计算。
- 约束条件
- 功率平衡约束:系统总发电功率需满足总负荷需求。
- 机组出力约束:各机组出力需在允许范围内。
- 储能约束:储能设备的充放电功率和容量限制。
- 启停时间约束:机组启动和停机需满足最小时间间隔。
- 模糊机会约束:将传统确定性约束松弛为含有模糊变量的约束,如风电和光伏出力、负荷需求等。
- 因此本模型采用第一种处理方法,用梯形参数的转化方法将模糊机会约束转化为相应的清晰等价类。
三、模糊机会约束处理
- 梯形模糊参数
- 采用梯形模糊数来描述风电、光伏出力及负荷需求的不确定性,包括最小值、最可能值、最大值及模糊区间宽度。
- 清晰化处理
- 将模糊机会约束转化为清晰等价类。对于简单问题,当模糊参数与决策变量之间存在线性关系时,可以通过数学变换将其转化为清晰等价类。
- 本研究采用梯形参数的转化方法,将模糊机会约束转化为相应的清晰等价类,以便利用传统求解方法进行计算。
四、求解方法
- 分离模糊参数与决策变量
- 对于简单问题,通过数学变换将模糊参数与决策变量分离,或建立两者之间的线性关系,从而将其转化为清晰等价类。
- 随机模拟技术
- 对于复杂问题,采用随机模拟技术(如蒙特卡洛模拟)进行近似求解。但该方法结果不精确,且样本容量大小不易把握。
- 优化算法
- 采用混合整数非线性规划(MINLP)算法求解优化问题,考虑目标函数和约束条件的复杂性。
- 利用商业优化软件(如GAMS、MATLAB等)进行求解。
五、案例分析
- 数据准备
- 收集风电、光伏出力历史数据,负荷需求数据,以及各机组的技术参数和经济参数。
- 模型构建
- 根据系统模型和约束条件,构建模糊机会约束规划模型。
- 求解与优化
- 利用上述求解方法进行计算,得到最优调度方案。
- 结果分析
- 分析优化后的运行成本、弃风弃光成本、碳成本等,并与传统确定性调度方案进行对比。
六、结论与展望
本研究通过引入模糊机会约束规划方法,有效处理了风电并网后电力系统调度的不确定性问题。通过梯形模糊参数的清晰化处理,将模糊机会约束转化为清晰等价类,并利用混合整数非线性规划算法进行求解。案例分析表明,该方法能够显著降低运行成本、弃风弃光成本和碳成本,提高电力系统的经济性和环保性。未来研究将进一步探索更高效的求解算法和更复杂的系统模型,以应对更大规模的可再生能源并网和更复杂的电力系统调度问题。
因此本模型采用第一种处理方法,用梯形参数的转化方法将模糊机会约束转化为相应的清晰等价类。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]张敏,韩晓龙.多目标模糊机会约束规划的低碳多式联运路径优化[J].计算机应用, 2023, 43(2):9.
[2]李佳瑶,刘伟娜.考虑碳交易和风荷预测误差的电力系统低碳经济调度[J].浙江电力, 2021, 40(5):6.
[3]李佳瑶,刘伟娜.考虑碳交易和风荷预测误差的电力系统低碳经济调度[J].浙江电力, 2021, 040(005):1-6.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取