使用含有三层隐层的神经网络识别手写数字

        

目录

1. 准备工作

2. 数据加载器

3.判断当前设备是否支持GPU

4. 构建神经网络模型

5. 训练模型

6. 定义损失函数和优化器

7. 训练和评估模型

8.部分重要结果输出


在本篇博客中,我们将使用PyTorch构建一个简单的神经网络模型,用于识别手写数字。我们的数据集是经典的MNIST,包含了大量的手写数字图像。

1. 准备工作

首先,导入必要的库和数据集。

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

 接下来,我们下载并准备好训练集和测试集。

# 下载训练数据集
training_data = datasets.MNIST(
    root='./data',
    train=True,
    download=True,
    transform=ToTensor(),
)

# 下载测试数据集
test_data = datasets.MNIST(
    root='./data',
    train=False,
    download=True,
    transform=ToTensor(),
)
2. 数据加载器

        使用PyTorch的DataLoader来加载数据,以便进行批处理和数据的迭代。

# 创建一个DataLoader来批量加载训练数据
train_dataloader = DataLoader(training_data, batch_size=64)
# 创建一个DataLoader来批量加载测试数据
test_dataloader = DataLoader(test_data, batch_size=64)

# 打印测试数据集中第一批数据的形状和标签形状
for X, y in test_dataloader:
    print(f"Shape of X[N,C,H,W]:{X.shape}")
    print(f"Shape of y: {y.shape} {y.dtype}")
    break
3.判断当前设备是否支持GPU
# 检测可用的设备(CPU、CUDA或MPS)
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
print(f"Using {device} device")
4. 构建神经网络模型

        定义一个简单的前馈神经网络模型。这里使用了三个隐藏层,并且在每个隐藏层后面加上了torch.sigmoid作为激活函数。


# 定义神经网络模型
class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()  # 将图片展平为一维数组
        self.hidden1 = nn.Linear(28 * 28, 256)  # 第一个隐藏层
        self.hidden2 = nn.Linear(256, 512)  # 第二个隐藏层
        self.hidden3 = nn.Linear(512, 128)  # 第三个隐藏层
        self.out = nn.Linear(128, 10)  # 输出层,10个类别

    def forward(self, x):
        x = self.flatten(x)
        x = self.hidden1(x)
        x = torch.sigmoid(x)  # 激活函数
        x = self.hidden2(x)
        x = torch.sigmoid(x)
        x = self.hidden3(x)
        x = torch.sigmoid(x)
        x = self.out(x)
        return x


model = NeuralNetwork().to(device)  # 实例化模型并移至指定设备
print(model)  # 打印模型结构
5. 训练模型

        定义训练函数和测试函数,分别用于训练模型和评估模型性能。

def train(dataloader, model, loss_fn, optimizer):
    model.train()  # 设置模型为训练模式
    batch_size_num = 1
    for X, y in dataloader:
        X, y = X.to(device), y.to(device)  # 将数据移动到设备上
        pred = model(X)  # 前向传播
        loss = loss_fn(pred, y)  # 计算损失
        optimizer.zero_grad()  # 梯度清零
        loss.backward()  # 反向传播
        optimizer.step()  # 更新权重

        loss_value = loss.item()  # 获取损失值
        print(f"loss: {loss_value:>7f} [number:{batch_size_num}]")
        batch_size_num += 1



def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()  # 设置模型为评估模式
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)  # 将数据移动到设备上
            pred = model(X)  # 前向传播
            test_loss += loss_fn(pred, y).item()  # 计算损失
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()  # 计算正确预测的数量
            a = (pred.argmax(1) == y)
            b = (pred.argmax(1) == y).type(torch.float)
    test_loss /= num_batches  # 计算平均测试损失
    correct /= size  # 计算准确率
    print(f"Test result:\n Accuracy: {(100 * correct)}%, Avg loss: {test_loss}")
6. 定义损失函数和优化器

        选择交叉熵损失作为损失函数,并使用随机梯度下降(SGD)作为优化器。


# 实例化损失函数和优化器
loss_fn = nn.CrossEntropyLoss()  # 使用交叉熵损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=1)  # 使用随机梯度下降优化器,学习率为1
7. 训练和评估模型

        最后,进行多轮训练和测试。

# 训练模型
train(train_dataloader, model, loss_fn, optimizer)
# 测试模型
test(test_dataloader, model, loss_fn)

# 进行多个epoch的训练
epochs = 10
for t in range(epochs):
    print(f"Epoch {t + 1}\n---------------------")
    train(train_dataloader, model, loss_fn, optimizer)
print("Done!")
# 最终测试模型性能
test(test_dataloader, model, loss_fn)
8.部分重要结果输出

...

中间略(非常多)

...

.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值