机器翻译ML

10.12 机器翻译

机器翻译是指将一段文本从一种语言自动翻译到另一种语言。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。

10.12.1 读取和预处理数据

我们先定义一些特殊符号。其中“”(padding)符号用来添加在较短序列后,直到每个序列等长,而“”和“”符号分别表示序列的开始和结束。

!tar -xf d2lzh_pytorch.tar # 用于解压缩 .tar 格式的压缩文件 d2lzh_pytorch.tar

import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
# sys.path.append("..") 
import d2lzh_pytorch as d2l

PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(torch.__version__, device)

结果:

接着定义两个辅助函数对后面读取的数据进行预处理。

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用’\t’隔开。在读取数据时,我们在句末附上“”符号,并可能通过添加“”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

结果:
在这里插入图片描述

10.12.2 含注意力机制的编码器—解码器

我们将使用含注意力机制的编码器—解码器来将一段简短的法语翻译成英语。下面我们来介绍模型的实现。

10.12.2.1 编码器

在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。正如我们在6.5节(循环神经网络的简洁实现)中提到的,PyTorch的nn.GRU实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)  # 定义嵌入层,将词汇索引映射为密集向量
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)  # 定义GRU循环神经网络层

    def forward(self, inputs, state):
        # 输入inputs的形状是(批量大小, 时间步数)
        # 将输入进行嵌入映射,并且将样本维度和时间步维度互换,以适应GRU的输入要求
        embedding = self.embedding(inputs.long()).permute(1, 0, 2)  # (时间步数, 批量大小, 输入特征维度)
        # 将嵌入向量序列embedding输入GRU,并返回输出张量和更新后的状态state
        return self.rnn(embedding, state)

    def begin_state(self):
        # 初始状态通常为None或零张量,这里示例化时没有显式定义
        return None

下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
print(output.shape, state.shape) # GRU的state是h, 而LSTM的是一个元组(h, c)
output.shape, state.shape

结果:
在这里插入图片描述

10.12.2.2 注意力机制

我们将实现10.11节(注意力机制)中定义的函数 𝑎 :将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数 𝑎定义里向量 𝑣 的长度是一个超参数,即attention_size。

def attention_model(input_size, attention_size):
    """
    创建一个简单的注意力模型,使用一个前馈神经网络实现。

    Args:
    - input_size (int): 输入特征向量的大小。
    - attention_size (int): 注意力模型中的隐藏层大小。

    Returns:
    - model (nn.Module): 定义注意力机制的Sequential模型。
    """
    model = nn.Sequential(
        nn.Linear(input_size, attention_size, bias=False),  # 线性层,用于将输入进行变换
        nn.Tanh(),  # Tanh激活函数,引入非线性
        nn.Linear(attention_size, 1, bias=False)  # 线性层,输出注意力权重
    )
    return model

注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
attention_forward(model, enc_states, dec_state).shape

结果:
在这里插入图片描述

10.12.2.3 含注意力机制的解码器

我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):# 前向传播
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

10.12.3 训练模型

我们先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。此外,同10.3节(word2vec的实现)中的实现一样,我们在这里也使用掩码变量避免填充项对损失函数计算的影响。

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

在训练函数中,我们需要同时迭代编码器和解码器的模型参数。

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    # 定义编码器和解码器的优化器,使用Adam优化器,学习率为lr
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    # 定义损失函数为交叉熵损失,reduction='none'表示不对损失进行求和或平均
    loss = nn.CrossEntropyLoss(reduction='none')

    # 创建数据加载器,batch_size为批量大小,shuffle=True表示每个epoch重新打乱数据顺序
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)

    # 循环训练num_epochs个epoch
    for epoch in range(num_epochs):
        l_sum = 0.0  # 用于累加每个epoch的总损失
        # 遍历数据加载器中的每个批量数据
        for X, Y in data_iter:
            enc_optimizer.zero_grad()  # 清零编码器优化器的梯度
            dec_optimizer.zero_grad()  # 清零解码器优化器的梯度
            l = batch_loss(encoder, decoder, X, Y, loss)  # 计算当前批量数据的损失
            l.backward()  # 反向传播,计算梯度
            enc_optimizer.step()  # 更新编码器参数
            dec_optimizer.step()  # 更新解码器参数
            l_sum += l.item()  # 累加当前批量数据的损失值
        # 每10个epoch输出一次当前epoch的平均损失
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。

embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

结果:
在这里插入图片描述

10.12.4 预测不定长的序列

在10.10节(束搜索)中我们介绍了3种方法来生成解码器在每个时间步的输出。这里我们实现最简单的贪婪搜索。

def translate(encoder, decoder, input_seq, max_seq_len):
    # 将输入序列分割为单词,并添加结束符EOS和填充符PAD,使其长度达到max_seq_len
    in_tokens = input_seq.split(' ')
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    
    # 将输入序列转换为索引表示,构建张量,batch_size=1
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]])  # 输入编码
    
    # 初始化编码器状态
    enc_state = encoder.begin_state()
    
    # 编码器处理输入序列,获取编码器输出和最终状态
    enc_output, enc_state = encoder(enc_input, enc_state)
    
    # 解码器的初始输入为起始符BOS对应的索引
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    
    # 使用编码器的最终状态初始化解码器的初始状态
    dec_state = decoder.begin_state(enc_state)
    
    output_tokens = []  # 用于存储翻译后的输出token序列
    
    # 开始解码过程,最多进行max_seq_len次解码
    for _ in range(max_seq_len):
        # 解码器进行一步解码,得到输出和新的状态
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        
        # 获取预测的最大概率的token的索引
        pred = dec_output.argmax(dim=1)
        
        # 将预测的token索引转换为对应的词汇表中的token
        pred_token = out_vocab.itos[int(pred.item())]
        
        # 如果预测的token为结束符EOS,则停止生成序列
        if pred_token == EOS:
            break
        else:
            output_tokens.append(pred_token)  # 将预测的token添加到输出序列中
            dec_input = pred  # 将当前预测的token作为下一步的输入
        
    return output_tokens  # 返回生成的输出token序列

简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

结果:
在这里插入图片描述

10.12.5 评价翻译结果

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)[1]。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

具体来说,设词数为 𝑛 的子序列的精度为 𝑝𝑛 。它是预测序列与标签序列匹配词数为 𝑛 的子序列的数量与预测序列中词数为 𝑛 的子序列的数量之比。举个例子,假设标签序列为 𝐴 、 𝐵 、 𝐶 、 𝐷 、 𝐸 、 𝐹 ,预测序列为 𝐴 、 𝐵 、 𝐵 、 𝐶 、 𝐷 ,那么 𝑝1=4/5, 𝑝2=3/4, 𝑝3=1/3, 𝑝4=0 。设 𝑙𝑒𝑛label 和 𝑙𝑒𝑛pred 分别为标签序列和预测序列的词数,那么,BLEU的定义为 exp ⁡ ( min ⁡ ( 0 , 1 − l e n label l e n pred ) ) ∏ n = 1 k p n 1 / 2 n , \exp\left(\min\left(0, 1 - \frac{len_{\text{label}}}{len_{\text{pred}}}\right)\right) \prod_{n=1}^k p_n^{1/2^n}, exp(min(0,1lenpredlenlabel))n=1kpn1/2n,

其中 k k k是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。

因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长子序列的精度赋予了更大权重。例如,当 p n p_n pn固定在0.5时,随着 n n n的增大, 0. 5 1 / 2 ≈ 0.7 , 0. 5 1 / 4 ≈ 0.84 , 0. 5 1 / 8 ≈ 0.92 , 0. 5 1 / 16 ≈ 0.96 0.5^{1/2} \approx 0.7, 0.5^{1/4} \approx 0.84, 0.5^{1/8} \approx 0.92, 0.5^{1/16} \approx 0.96 0.51/20.7,0.51/40.84,0.51/80.92,0.51/160.96。另外,模型预测较短序列往往会得到较高 p n p_n pn值。因此,上式中连乘项前面的系数是为了惩罚较短的输出而设的。举个例子,当 k = 2 k=2 k=2时,假设标签序列为 A A A B B B C C C D D D E E E F F F,而预测序列为 A A A B B B。虽然 p 1 = p 2 = 1 p_1 = p_2 = 1 p1=p2=1,但惩罚系数 exp ⁡ ( 1 − 6 / 2 ) ≈ 0.14 \exp(1-6/2) \approx 0.14 exp(16/2)0.14,因此BLEU也接近0.14。

下面来实现BLEU的计算。

def bleu(pred_tokens, label_tokens, k):
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    
    # 计算长度惩罚
    score = math.exp(min(0, 1 - len_label / len_pred))
    
    # 计算多元组匹配得分
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)
        
        # 统计参考答案中所有长度为n的子串的出现次数
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        
        # 统计预测结果中与参考答案中长度为n的子串匹配的数量
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        
        # 计算n-gram匹配得分,并应用长度惩罚
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    
    return score

接下来,定义一个辅助打印函数。

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

预测正确则分数为1。

score('ils regardent .', 'they are watching .', k=2)

结果:
在这里插入图片描述

score('ils sont canadienne .', 'they are canadian .', k=2)

结果:
在这里插入图片描述

小结

可以将编码器—解码器和注意力机制应用于机器翻译中。
BLEU可以用来评价翻译结果。

练习

如果编码器和解码器的隐藏单元个数不同或层数不同,我们该如何改进解码器的隐藏状态初始化方法?

方法一:使用线性变换进行初始化
一种简单而有效的方法是使用线性变换将编码器的隐藏状态映射到解码器的隐藏状态空间。假设编码器隐藏状态的维度为 ( H_e ),解码器隐藏状态的维度为 ( H_d )

方法二:使用注意力机制进行对齐
另一种改进方法是利用注意力机制(Attention Mechanism)来动态地对齐编码器和解码器的隐藏状态。注意力机制允许解码器根据当前解码步骤的上下文动态地调整对编码器隐藏状态的关注程度,从而有效地进行信息传递和状态初始化。

方法三:动态调整解码器架构
如果编码器和解码器在层数或隐藏单元个数上差异较大,还可以考虑动态调整解码器的架构,以使其能够适应编码器的输出。例如,可以增加或减少解码器的层数或隐藏单元个数,以便更好地匹配输入编码器的表示。

在训练中,将强制教学替换为使用解码器在上一时间步的输出作为解码器在当前时间步的输入。结果有什么变化吗?

1.影响训练速度和稳定性:

强制教学通常能够加速训练过程,因为每个时间步的输入是真实的目标序列中的标记,能够直接指导解码器学习正确的输出。
当使用解码器的自身输出作为下一个时间步的输入时,模型需要逐步生成整个序列,因此训练过程可能会变得更为缓慢,尤其是在开始阶段。

2.影响模型的生成能力:

解码器在自我生成的情况下,每个时间步的输入都依赖于其前一个时间步生成的结果。这种方式更接近实际应用中模型的行为,因为模型必须能够自主生成输出而不依赖于教师提供的输入。
这种训练方法可能会提高模型在生成阶段的稳健性和表达能力,因为模型在训练时已经习惯了依赖自身生成的结果。

3.影响解码器的学习行为:

使用自身输出作为输入可能导致错误的累积,特别是在生成较长序列时,错误可能会逐步放大。
同时,这种方式也可能有助于模型更好地理解生成过程中的依赖关系和自我修正能力。

4.训练过程中的平衡:

在实践中,通常会采用一种混合策略,逐步减少使用强制教学的比例,从而使模型逐渐过渡到完全自主生成输出的状态。这样可以平衡训练的稳定性和模型的生成能力。

总体而言,将强制教学替换为解码器自身输出作为输入会对训练过程产生一些影响,包括训练速度、模型生成能力和训练稳定性的变化。选择合适的训练策略取决于具体的任务需求和模型设计目标。

试着使用更大的翻译数据集来训练模型,例如 WMT [2] 和 Tatoeba Project [3]。(具体代码见“练习题3-LargeDataset”文件)

在参考文献[3] Tatoeba Project. http://www.manythings.org/anki/ 中下载了Mandarin Chinese - English cmn-eng.zip (29909)数据集。解压缩后导入
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/0c2e5eb066664bffb10a39070d69484c.png

但由于除了英语-中文的翻译,每行后还有数据来源,可以通过修改读取方式后再利用该数据集训练!

在这里插入图片描述
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/c3ac74cfcf034e089ffc84a3d55a0f2a.png

在这里插入图片描述

同时记得修改代码中的文件路径
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在AutoDL上租借GPU后运行。为了发挥GPU性能,将batch_size改为128.加快训练。
在这里插入图片描述
上图为租借信息,下图训练过程。
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/232bfb758351452fb37f8c46a0909d79.png
训练完成后简单预测一下
在这里插入图片描述

用BLEU评价结果:
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/2edff5b1655c42c7a3a7e6f74ba6c7a5.png
在这里插入图片描述
对于没出现在词典中的句子预测不好

需要修改一下bleu函数,把range(1, k+1)改成range(1, k)
在这里插入图片描述

参考文献

[1] Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311-318). Association for Computational Linguistics.

[2] WMT. http://www.statmt.org/wmt14/translation-task.html

[3] Tatoeba Project. http://www.manythings.org/anki/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值