佛系爱学习
码龄2年
关注
提问 私信
  • 博客:70,814
    问答:6
    70,820
    总访问量
  • 48
    原创
  • 291,477
    排名
  • 1,014
    粉丝
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2023-04-12
博客简介:

2301_77578187的博客

查看详细资料
  • 原力等级
    当前等级
    3
    当前总分
    420
    当月
    12
个人成就
  • 获得1,258次点赞
  • 内容获得15次评论
  • 获得1,109次收藏
  • 代码片获得9,045次分享
创作历程
  • 48篇
    2024年
成就勋章
TA的专栏
  • 搭建
    6篇
  • 数据可视化知识
    6篇
  • 数据可视化题目
    1篇
  • flink知识点
    25篇
  • HBase
    1篇
  • flink的使用
    3篇
  • redis
    1篇
兴趣领域 设置
  • Python
    python
  • Java
    java
  • 编程语言
    pythonjava
  • 开发工具
    eclipsedockeridea
  • 大数据
    sqlmysqlhbasehadoophivezookeepersparkflumekafka数据库hdfssqoop大数据数据仓库数据库架构数据库开发
  • 后端
    sqlmysqlscala
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

调整雷达图

首先是具体对于雷达图的要求相应的要求难点主要集中于。
原创
发布博客 2024.04.07 ·
1149 阅读 ·
15 点赞 ·
0 评论 ·
4 收藏

Flink容错机制

检查点的目标是确保在发生故障时,系统能够回滚到最近的一个一致状态,并从该状态继续处理数据,从而避免数据丢失或重复。此外,根据所使用的 Flink 版本和配置,可能还需要考虑其他因素,例如状态的大小、检查点的开销以及任务恢复的时间等。在分布式流处理系统中,容错机制是至关重要的,因为它能确保在故障发生时,系统能够迅速恢复并继续处理数据,从而保持数据的一致性和完整性。Apache Flink 的容错机制,特别是检查点和状态恢复,是在内部自动管理的,通常不需要用户显式编写代码来触发或管理这些过程。
原创
发布博客 2024.04.02 ·
1428 阅读 ·
11 点赞 ·
1 评论 ·
21 收藏

Hbase

执行命令 source /etc/profile,使刚刚的配置生效。--将 hbase 设置为分布式部署 -->--指定 zookeeper 服务器 -->--指定 hbase 根路径 -->-- 避免出现启动错误 -->配置 hbase-site.xml 文件。修改 regionservers 文件。修改 hbase-env.sh 文件。切换到hbase的conf目录下。配置HBase相关文件。添加完成后保存并退出。
原创
发布博客 2024.04.02 ·
558 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

flink on yarn

Apache Flink,作为大数据处理领域的璀璨明星,以其独特的流处理和批处理一体化模型,成为众多企业和开发者的首选。它不仅能够在处理无界数据流时展现出卓越的实时性能,还能在有界数据批处理上达到高效稳定的效果。本文将简要介绍Flink的基本概念,以及如何在Yarn上安装和配置Flink。初识Flink的魅力Apache Flink是一个开源的计算框架,专为分布式数据流和批量数据处理而设计。它支持对有界和无界数据流进行状态化的计算,使得数据处理不再局限于传统的批处理或单一的流处理模式。
原创
发布博客 2024.04.02 ·
1072 阅读 ·
25 点赞 ·
0 评论 ·
7 收藏

学习可视化比较好用的网站Apache ECharts

Apache ECharts 是一个基于 JavaScript 的开源可视化图表库,它提供了直观、交互丰富且可高度个性化定制的数据可视化图表。在实际使用中,用户可以通过简单的 JavaScript 代码来调用 ECharts,并生成各种美观且实用的数据可视化图表。Apache ECharts 是一个功能强大、易于使用且高度可定制的数据可视化图表库,它可以帮助用户更好地理解和展示数据,从而做出更明智的决策。而且可以进行修改左侧的代码从而打到改变右侧的图像以达到需求的图案。左侧的代码可以自由选择js还是ts。
原创
发布博客 2024.03.27 ·
813 阅读 ·
17 点赞 ·
0 评论 ·
4 收藏

Vue的生命周期函数

beforeCreate :在实例初始化之后,数据观测 (data observer) 和事件/监听的配置之前被调用。created:实例创建完成后调用,此时完成了数据观测,但尚未挂载 DOM,$el 属性还没有显示出来。beforeMount :在挂载开始之前被调用,相关的render函数首次被调用。这个时候还没有开始挂载节点,$el 属性目标不会有任何变化。mounted:el 被新创建的vm.$el替换,并挂载到实例上去之后调用该钩子。如果实例被挂载到一个文档内元素上,当mounted。
原创
发布博客 2024.02.28 ·
2048 阅读 ·
48 点赞 ·
1 评论 ·
19 收藏

Vue电商习题

编写Vue工程代码,根据接口,用条形图展示2020年平均消费额(四舍五入保留两位小数)最高的5个省份,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至对应报告中。
原创
发布博客 2024.02.27 ·
977 阅读 ·
28 点赞 ·
0 评论 ·
12 收藏

Vue路由与网络请求

相比之下,前端路由则是一种更为高效的处理方式。而路由器,则是实现这一功能的硬件设备,它负责在不同的网络之间传输数据,确保数据能够按照预定的路由规则正确地到达目的地。嵌套路由的实现原理是在一个路由内部定义其子路由,形成路由的层级结构。每个路由都可以有自己的子路由,这些子路由可以进一步嵌套,形成一个树状的路由结构。需要注意的是,在使用路由重定向时,应该仔细考虑重定向的规则和目标地址的设置,以确保重定向的准确性和有效性。在使用嵌套路由时,开发者需要注意路由的层级关系和路径的匹配规则,以确保路由的正确性和高效性。
原创
发布博客 2024.02.26 ·
499 阅读 ·
16 点赞 ·
0 评论 ·
8 收藏

vue指令 (侦听器)

如果侦听的是一个对象,默认情况下,只有当对象的属性发生变化时,侦听器才会被触发。如果需要将对象内部的嵌套属性变化也侦听进来,就需要设置。请注意,过度使用深度侦听可能会降低性能,因为它需要递归遍历对象的所有嵌套属性。因此,在不需要深度侦听的情况下,最好避免使用。当被侦听的属性变化时,回调函数将被调用,执行相应的操作。的值发生变化时,侦听器的回调函数将被调用,并且控制台将输出一条消息,显示旧值和新值。对象中的任何嵌套属性发生变化,侦听器都会被触发。以下是一个简单的示例,演示了如何使用。选项来侦听它的变化。
原创
发布博客 2024.02.23 ·
823 阅读 ·
14 点赞 ·
0 评论 ·
11 收藏

Vue简介

例如,Vue Router是用于构建单页面应用的路由插件,Vuex是用于状态管理的插件,而Pinia则是一个轻量级的状态管理库。这种数据绑定的方式实现了Model和View之间的自动同步,减少了手动操作DOM的需求,提高了开发效率和代码的可维护性。然后,随着项目的增长和复杂性的增加,Vue的生态系统提供了各种工具和库来增强应用的功能,如路由管理、状态管理和构建工具等。无论是初学者还是经验丰富的开发者,都可以在Vue中找到适合自己的工具和功能,以高效、灵活的方式构建出色的用户界面。
原创
发布博客 2024.02.21 ·
1188 阅读 ·
27 点赞 ·
0 评论 ·
16 收藏

JSON数据结构详解

JSON,全称为JavaScript Object Notation,是一种轻量级的数据交换格式。它基于ECMAScript的一个子集,采用完全独立于编程语言的文本格式来存储和表示数据。JSON主要有两种结构:对象结构和数组结构。
原创
发布博客 2024.02.19 ·
740 阅读 ·
10 点赞 ·
0 评论 ·
10 收藏

Flink容错机制

在恢复时,Flink将从最近的检查点中读取状态数据,并尝试将任务恢复到该检查点之前的状态。总之,Flink的保存点功能为用户提供了灵活的状态管理选项,使得用户可以更好地控制和管理Flink作业的状态。更重要的是,在有状态的流处理中,任务需要保持其之前的状态,以便继续处理新数据。总之,Flink的保存点功能为用户提供了更加灵活和可靠的状态管理选项,帮助用户更好地控制和管理Flink流式作业。总之,通过检查点和状态后端机制,Flink能够在发生故障时恢复流处理的状态,确保数据的完整性和准确性。
原创
发布博客 2024.02.19 ·
1954 阅读 ·
24 点赞 ·
1 评论 ·
20 收藏

前后端分离概念

传统的开发方式中,前端代码零散地分布在整个系统架构中,这不仅增加了开发难度,也降低了效率。在传统的开发模式下,前端和后端是紧密耦合的,前端代码嵌入到后端代码中,导致开发效率低下,维护困难。而前后端分离则将前端和后端分开,前端使用HTML、CSS、JavaScript等技术栈,后端使用Java、Python、Node.js等技术栈,两者通过API接口进行通信,实现数据的交互。这样,前端团队可以专注于研究工程化、模块化、系统化的前端技术,以更好地解决项目中遇到的问题,并适应技术的快速发展。
原创
发布博客 2024.02.19 ·
430 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

Flink CEP(模式 API Pattern API )

在Flink的学习过程中,我们已经掌握了从基本原理和核心层的DataStream API到底层的处理函数,再到应用层的Table API和SQL的各种手段,可以应对实际应用开发的各种需求。有了定义好的个体模式,我们可以进一步将这些模式按照一定的顺序连接起来,以定义一个完整的复杂事件匹配规则。在实际应用中,个体模式的组合和嵌套为我们提供了更灵活的事件处理能力,能够应对各种复杂的场景和需求。在实际应用中,个体模式的组合和嵌套为我们提供了丰富的工具和功能,帮助我们更好地处理和分析复杂事件。
原创
发布博客 2024.02.01 ·
1287 阅读 ·
21 点赞 ·
0 评论 ·
18 收藏

Flink CEP(基本概念)

在Flink的学习过程中,我们已经掌握了从基本原理和核心层的DataStream API到底层的处理函数,再到应用层的Table API和SQL的各种手段,可以应对实际应用开发的各种需求。然而,在实际应用中,还有一类更为复杂的需求,即需要检测以特定顺序先后发生的一组事件,进行统计或做报警提示。这类需求很难直接用SQL或者DataStream API来完成,需要使用更底层的处理函数来解决。
原创
发布博客 2024.02.01 ·
1458 阅读 ·
27 点赞 ·
0 评论 ·
25 收藏

Flink容错机制

同时,由于保存点包含作业的一致性状态,因此它也可以用于故障恢复,以确保数据的完整性和准确性。总之,Flink的保存点功能为用户提供了灵活的状态管理选项,使得用户可以更好地控制和管理Flink作业的状态。更重要的是,在有状态的流处理中,任务需要保持其之前的状态,以便继续处理新数据。总之,Flink的保存点功能为用户提供了更加灵活和可靠的状态管理选项,帮助用户更好地控制和管理Flink流式作业。总之,通过检查点和状态后端机制,Flink能够在发生故障时恢复流处理的状态,确保数据的完整性和准确性。
原创
发布博客 2024.01.31 ·
1957 阅读 ·
58 点赞 ·
0 评论 ·
21 收藏

容错机制(端到端精确一次 end-to-end exactly-once)

这样,在故障恢复时,可以从检查点中读取偏移量,重置数据源的读取位置,重新获取数据,从而保证数据不丢失。如果有一个外部应用读取写入的数据,可能会看到奇怪的现象:短时间内,结果会突然“跳回”到之前的某个值,然后“重播”一段之前的数据。为了实现端到端的精确一次(exactly-once)一致性语义,除了Flink的检查点机制和可重放数据的外部数据源之外,还需要关注数据写入外部系统的重复问题。在Flink中,检查点机制可以保证故障恢复后数据不丢(在能够重放的前提下),并且只处理一次,这是实现端到端一致性的基础。
原创
发布博客 2024.01.31 ·
1035 阅读 ·
18 点赞 ·
0 评论 ·
23 收藏

容错机制(状态一致性)

在流式处理中,状态一致性意味着在故障发生后,Flink能够准确地恢复到故障发生前的一致状态,使得应用程序在恢复后能够继续处理数据,并且不会丢失或重复处理数据。当故障发生时,Flink可以从最近的检查点开始恢复状态并重新处理数据,以确保状态的一致性和结果的正确性。在Flink流式处理中,检查点机制确实可以保证内部状态的一致性,并且可以实现精确一次(exactly-once)语义,从而在故障恢复时确保结果的正确性。在Flink流式处理架构中,一致性的概念主要应用于故障恢复,以确保状态恢复后结果的正确性。
原创
发布博客 2024.01.29 ·
1060 阅读 ·
21 点赞 ·
0 评论 ·
19 收藏

容错机制 (检查点 Checkpoint)

这种方式可以减少检查点的大小和存储需求,同时也可以减少恢复时间,因为只需要恢复最新的状态数据而不是整个系统的状态。这种状态是与应用中特定的键值关联的,因此不同的键值会有各自的状态。由于我们只在所有任务处理完同一个输入数据时进行状态保存,因此不需要存储与处理过程无关的其他信息,这有助于减少存储空间的占用,并提高检查点的生成速度。通过这种异步分界线快照算法,Flink 可以在不暂停流处理的情况下,有效地处理多个分区之间的分界线传递,并确保每个任务都能正确地识别触发检查点保存的数据。
原创
发布博客 2024.01.29 ·
1514 阅读 ·
24 点赞 ·
0 评论 ·
28 收藏

状态编程(状态持久化和状态后端)

状态编程状态持久化和状态后端在 Flink 的状态管理机制中,对状态进行持久化(persistence)保存是一个重要的功能,它允许系统在发生故障后进行重启恢复。为了实现这一功能,Flink 采用了一种特殊的机制来对分布式状态进行“快照”保存。Flink 将当前所有分布式状态的快照保存到一个称为“检查点”(checkpoint)或“保存点”(savepoint)的外部存储系统中。这种机制确保了即使在系统发生故障或其他异常情况下,状态数据也不会丢失,并且可以在故障恢复后从最近的检查点或保存点恢复。
原创
发布博客 2024.01.26 ·
873 阅读 ·
15 点赞 ·
0 评论 ·
27 收藏
加载更多