阶乘与伽马函数浅谈

文章介绍了阶乘的概念,从自然数扩展到整数的定义,并引入了双阶乘。接着,重点讲述了伽马函数作为阶乘的广义形式,扩展了定义域至全体实数,它是通过反常积分定义的。文章还提及了伽马函数的历史背景,以及一些关键性质。
摘要由CSDN通过智能技术生成

    初来乍到,望多指教。在下默默无闻诚心为大家献上《阶乘与伽马函数浅谈》一文,希望能和大家一起讨论数学,研究数学,在数学中获得精神上的美餐。

    话不多说,上文——

一、新朋友——阶乘

(1)认识一下

阶乘(factorial)是基斯顿·卡曼(Christian Kramp)1808年发明的运算符号,指从1乘以2乘以3乘以4一直乘到所要求的数。符号语言如下:

n!=1\times 2\times 3\times \cdots \times (n-1)\times n=\prod_{i=1}^{n}i(n\in \mathbb{N}_{+})

特别的,0!=1.

由楼上的式子可以看出,n的取值范围是全体自然数,如:

3!=1\times 2\times 3=6

4!=1\times 2\times 3\times 4=24

5!=1\times 2\times 3\times 4\times 5=120

\cdots \cdots

 (2)稍加扩充

如果仍按(1)中的定义,那么阶乘的可使用范围就显得有些狭小.下面将阶乘的范围扩充:

(-n)!=\frac{1}{(n+1)!}(n\in \mathbb{Z})

这样一来,n的范围就由自然数扩充到了全体整数.

(3)双阶乘

我们接着引入双阶乘: m是自然数时,表示不超过m且与m有相同奇偶性的所有正整数的乘积;当m是负奇数时,表示绝对值不超过它的绝对值的所有负奇数的绝对值积的倒数.

这一串定义看起来不大友好,那么就让简洁的符号来代替:

                                                  (2n)!!=2\times 4\times6 \times \cdots \times 2n=\prod_{i=2}^{n}2i

                                    (2n-1)!!=1\times 3\times5 \times \cdots \times (2n-1)=\prod_{i=1}^{n}(2i-1)

                           [-(2n-1)]!!=\frac{1}{\left | -1 \right |\times \left | -3 \right |\times \left | -5 \right |\times \cdots \times \left | -(2n-1) \right |}=\frac{1}{\prod_{i=0}^{n}\left | 2i-1 \right |}

  \cdots \cdots

好像更加不友好了(为啥每次都得扯上大型运算符…).举个几例子吧:

5!!=1\times 3\times 5=15

8!!=2\times 4\times6 \times 8=384

(-7)!!=\frac{1}{\left | -1 \right |\times \left | -3 \right |\times \left | -5 \right |\times \left | -7 \right |}=\frac{1}{105}

这下总该明了一些了吧.

另外,0!!=1!!=(-1)!!=1.

还有一个重要等式:

(2n-1)!!(2n)!!=(2n)!

把左边式子按定义展开,即可得到右边.

二、阶乘函数

    阶乘函数其实并不是很常用,更常用的是(三)中的那个可怕的家伙.这里只给出函数f(x)=x!x>0时的图像:

三、广义阶乘函数——伽马函数

    如果你感到不解,很正常,我或许比所有人都迷糊,闭上眼,让思绪飞一会——

    但如果你觉得头脑仍然清晰无比,很好,那就让我们领略真正的数学——伽马函数(前方高能).

    前面提到的阶乘函数的定义域都仅限于整数,甚至连有理数都无法涉足.这个伽马函数(又称欧拉第二积分)一下子把阶乘函数的定义域扩展到了全体实数.这个函数是用一个反常积分式定义的,不是初等函数.伽马函数也可继续扩展到复数范围内,这里我们只浅浅地见识一下实数范围内的(无论什么范围都将我搞得无所适从).

    1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16.....可以用通项公式n^2自然的表达,即便n为实数的时候,也可以找到一条平滑的曲线y=x^2通过所有的整数点(n,n^2),从而可以把定义在整数集上的公式延拓到实数集合。一天哥德巴赫开始处理阶乘序列1,2,6,24,120,...,可以计算2!,3!,是否可以计算2.5!呢?把最初的一些(n,n!)的点画在坐标轴上,确实可以看到,可以画出一条通过这些点的平滑曲线.

    但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教伯努利,由于欧拉当时和伯努利在一块,他也因此得知了这个问题.而欧拉于1729 年完美地解决了这个问题,由此导致了伽玛 函数的诞生,当时欧拉只有22岁.(年少有为啊!)

一起来欣赏它的表达式:

\Gamma (x)=\int_{0}^{+\infty }t^{x-1}e^{t}dt

顺便看看它的图像:

怎么样,是不是看上去就有一种对数学的敬畏之情?

在我大脑超负荷之前,最后给出几个伽马函数的性质: 

                                                                                         

\Gamma (1)=1

\Gamma \left ( \frac{1}{2} \right )=\sqrt{\pi }

\Gamma (n+1)=n\Gamma (n)=n!

\Gamma (n)\Gamma (1-n)=\frac{\pi }{\sin n\pi }

       好了,今天的分享就到这里,文中若有不足之处或可改进之处,真诚希望读者提出宝贵意见,笔者定会立即改正!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值