揭秘固态电池:AI与计算模拟的完美融合

AI的出现,是否能替代IT从业者? 10w+人浏览 1.1k人参与

1. 掌握固态电池(SSB)的发展使命,基本构成、固态电解质分类,工作原理、关键挑战与性能评估。

2. 了解利用第一性原理(DFT)和分子动力学(MD)及其相关工具(如VASP, CP2K, LAMMPS, Gromacs)计算固态电池关键材料(电极、电解质)及界面性质的基本方法。

3. 掌握机器学习的基本概念、常用算法及其在材料科学,特别是固态电池领域的应用流程。

4. 学习如何为固态电池体系(包括电极、电解质、界面)构建有效的特征描述符以及如何利用VASP等DFT工具对该类描述符进行计算。

5. 熟练运用Python及其相关库(Numpy, Pandas, Scikit-learn, Pytorch/TensorFlow, Pymatgen, ASE)处理固态电池相关数据并构建机器学习模型。

6. 掌握利用机器学习、深度学习等模型预测固态电池关键性能(如界面稳定性、离子电导率、循环寿命等)的方法。

7. 学习使用机器学习加速新型固态电池材料体系(特别是稳定的界面组合)的发现和设计,如利用Matminer工具结合Material Project数据库进行高通量筛选。

8. 掌握使用机器学习与传统计算模拟(DFT/MD)结合,进行多尺度研究的策略,利用先进的神经网络模型如Deepmd-kit, MACE等加速材料的研发。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值