目录
桶排序
桶排序的基本过程
**桶排序(Bucket Sort)**又称箱排序,是一种比较常用的排序算法。其算法原理是将数组分到有限数量的桶里,再对每个桶分别排好序(可以是递归使用桶排序,也可以是使用其他排序算法将每个桶分别排好序),最后一次将每个桶中排好序的数输出。
桶排序的基本步骤
1、确定桶的数量和范围:
首先确定数据的范围和桶的数量。例如,如果数据范围是 [0, 100),并且希望将数据分成 10 个桶,则每个桶的范围是 10。
2、将元素分配到桶中:
遍历待排序的元素,将每个元素放到对应的桶中。这个过程依赖于元素的值与桶的范围,可以通过一些数学方法(如取整法)确定每个元素应放入哪个桶。
3、对每个桶进行排序:
对每个非空桶内部的数据进行排序。通常可以使用其他简单的排序算法,如插入排序(因为桶内的数据通常较少,可以高效排序)。
4、合并所有桶中的数据:
将所有桶中的数据按顺序合并,得到最终的排序结果。
定义10个桶,依次判断每一个数值对于10的余数,将对应的余数放到对应的桶当中,按先后顺序大小顺序依次从桶中拿出数据完成依次排序,重复上述步骤直到所有的数据都有序。
第一次排序后:
第三次排序后:
第四次:
最后一次排序:
时间复杂度
桶排序的时间复杂度
最佳时间复杂度:O(n + k)(当数据均匀分布时)
平均时间复杂度:O(n + k)(大部分情况下)
最坏时间复杂度:O(n^2)(当数据分布不均匀时,某些桶可能包含大量元素)
空间复杂度
桶排序的空间复杂度
空间复杂度:O(n + k),其中 n 是元素数量,k 是桶的数量。
如果桶内的排序使用原地排序(如插入排序),则空间复杂度为 O(n)。但是如果使用额外空间的排序算法(如归并排序),空间复杂度会增加。
桶排序代码实现
代码如下:
import java.util.ArrayList;
import java.util.Collections;
public class BucketSort {
// 函数:桶排序
public static void bucketSort(int[] arr) {
// 如果数组为空或只有一个元素,则无需排序
if (arr == null || arr.length <= 1) {
return;
}
// 1. 找出数组中的最大值和最小值
int minValue = arr[0];
int maxValue = arr[0];
for (int num : arr) {
if (num < minValue) minValue = num;
if (num > maxValue) maxValue = num;
}
// 2. 计算桶的数量
int bucketCount = arr.length;
ArrayList<Integer>[] buckets = new ArrayList[bucketCount];
// 初始化桶
for (int i = 0; i < bucketCount; i++) {
buckets[i] = new ArrayList<>();
}
// 3. 将元素分配到桶中
for (int num : arr) {
int bucketIndex = (num - minValue) * (bucketCount - 1) / (maxValue - minValue);
buckets[bucketIndex].add(num);
}
// 4. 对每个桶进行排序
for (int i = 0; i < bucketCount; i++) {
Collections.sort(buckets[i]);
}
// 5. 将桶中的数据收集起来
int index = 0;
for (int i = 0; i < bucketCount; i++) {
for (int num : buckets[i]) {
arr[index++] = num;
}
}
}
// 测试桶排序算法
public static void main(String[] args) {
int[] arr = {421, 3122, 15123, 7218, 112, 1890, 5521};
System.out.println("原始数组:");
for (int num : arr) {
System.out.print(num + " ");
}
System.out.println();
// 执行桶排序
bucketSort(arr);
// 输出排序后的数组
System.out.println("排序后的数组:");
for (int num : arr) {
System.out.print(num + " ");
}
}
}
结果如下:
112 421 1890 3122 5521 7218 15123
选择排序
快速排序的基本步骤
1、从未排序部分选择最小元素:
假设数组的第一个元素为最小值,并与数组中其他元素比较。
遍历数组中剩余部分的元素,找到最小的元素。
2、交换最小元素与当前元素:
将当前最小元素与数组中第一个元素交换位置。
这样,数组中第一个元素就变成了最小值,已排序部分增加一个元素。
3、继续处理剩余部分:
接着对剩下的未排序部分重复上述步骤,直到整个数组排序完成。
第一次中的最小值:
第二次排序:
每次找到最小值之后与其对应的位置的值相对换,此后重复上述操作,直到结束。
实现代码
实现代码如下:
public class selectionSort {
// 选择排序方法
public static void selectionSort(int[] arr) {
// 外层循环用于遍历数组
for (int i = 0; i < arr.length - 1; i++) {
// 假设当前元素是最小值
int minIndex = i;
// 内层循环用于找出未排序部分的最小值
for (int j = i + 1; j < arr.length; j++) {
if (arr[j] < arr[minIndex]) {
minIndex = j; // 更新最小值的索引
}
}
// 如果最小值的索引不是当前索引,则交换
if (minIndex != i) {
int temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;
}
}
}
// 打印数组的方法
public static void printArray(int[] arr) {
for (int i : arr) {
System.out.print(i + " ");
}
System.out.println();
}
public static void main(String[] args) {
// 测试选择排序
int[] arr = {64, 25, 12, 22, 11,71,20,1,0,57};
System.out.println("排序前的数组:");
printArray(arr);
selectionSort(arr);
System.out.println("排序后的数组:");
printArray(arr);
}
}
结果如下:
0 1 11 12 20 22 25 57 64 71
时间复杂度
时间复杂度:选择排序的时间复杂度始终是 O(n²),无论数组是已经有序、逆序还是随机排序的。
空间复杂度
选择排序是原地排序算法,空间复杂度为 O(1),不需要额外的存储空间。
插入排序
插入排序(Insertion Sort)是一种简单的排序算法,其基本思路类似于我们整理扑克牌的过程:从第二张牌开始,与前面的牌比较,将其插入到合适的位置,直到所有的牌都整理完成。对于数组来说,插入排序通过将元素逐一插入到已经排序的部分,从而达到排序的目的。
实现基本思路
1、假设数组的第一个元素已经排序:在插入排序开始时,我们假设第一个元素已经是排序好的。然后从第二个元素开始,逐个与前面的已排序部分进行比较。
2、找到合适的位置插入:对于当前的元素(假设是 arr[i]),将其与已排序部分的元素进行比较,从已排序部分的最后一个元素开始,一直到第一个元素,找到合适的位置(即比 arr[i] 小的元素的位置),并将 arr[i] 插入该位置。
3、移动已排序部分的元素:在插入过程中,为了给新元素腾出位置,可能需要将已排序部分的元素向右移动一位。
4、重复以上步骤:对每一个元素进行上述操作,直到整个数组都有序。
代码实现
public class InsertionSort {
// 插入排序的主函数
public static void insertionSort(int[] arr) {
// 从第二个元素开始遍历,因为假设第一个元素已经排好序
for (int i = 1; i < arr.length; i++) {
int current = arr[i]; // 当前要插入的元素
int j = i - 1; // 从当前元素的前一个元素开始查找插入位置
// 向前移动所有比当前元素大的元素,为当前元素腾出插入位置
while (j >= 0 && arr[j] > current) {
arr[j + 1] = arr[j]; // 元素右移
j--; // 继续向前检查
}
// 插入当前元素到找到的位置
arr[j + 1] = current;
}
}
// 主函数,测试插入排序
public static void main(String[] args) {
int[] arr = {5, 2, 9, 1, 5, 6};
System.out.println("原数组:");
for (int num : arr) {
System.out.print(num + " ");
}
System.out.println();
insertionSort(arr); // 执行插入排序
System.out.println("排序后的数组:");
for (int num : arr) {
System.out.print(num + " ");
}
}
}
时间复杂度
最好情况:当数组已经有序时,每次插入操作只需要进行一次比较,因此时间复杂度为 O(n)。
最坏情况:当数组是逆序时,每次插入操作需要与数组中的所有元素比较,时间复杂度为 O(n²)。
平均情况:平均时间复杂度为 O(n²),这意味着插入排序对于较大的数组效率较低。
空间复杂度
空间复杂度:O(1)
希尔排序
希尔排序(Shell Sort)是一种基于插入排序的改进算法,它通过将原始数据分成多个子序列来优化插入排序的性能。具体来说,希尔排序通过定义一个间隔(gap),先对间隔内的元素进行插入排序,接着逐步缩小间隔,直到最终间隔为1,此时进行普通的插入排序,最终使得整个数组有序。
希尔排序的基本思路
1、分组:
初始时,将数组按照一定的间隔(gap)分成多个子序列。每个子序列内部元素的相对顺序独立地进行插入排序。
间隔的选择是关键,通常希尔排序会从较大的间隔开始,然后逐渐减小间隔。
2、插入排序:
对每个子序列,进行插入排序。由于每个子序列的元素相隔较远,插入排序的效率通常比对整个数组的插入排序要高。
3、缩小间隔:
每次插入排序完成后,减小间隔(gap),例如将间隔减少为原来的 1/2,继续对新的子序列进行插入排序。
4、最终排序:
当间隔缩小为 1 时,进行一次完整的插入排序,此时元素已经有了一定程度的局部有序,插入排序的效率会大大提升。
代码实现
public class ShellSort {
// Shell Sort算法
public static void shellSort(int[] arr) {
int n = arr.length;
// 初始增量序列,通常增量初始值为n/2,逐步减小
for (int gap = n / 2; gap > 0; gap /= 2) {
// 对每个间隔gap进行插入排序
for (int i = gap; i < n; i++) {
int temp = arr[i];
int j = i;
// 插入排序:将arr[i]插入到对应的间隔位置
while (j >= gap && arr[j - gap] > temp) {
arr[j] = arr[j - gap];
j -= gap;
}
arr[j] = temp;
}
}
}
// 打印数组的方法
public static void printArray(int[] arr) {
for (int i : arr) {
System.out.print(i + " ");
}
System.out.println();
}
// 主函数
public static void main(String[] args) {
int[] arr = { 12, 34, 54, 2, 3 };
System.out.println("原始数组:");
printArray(arr);
shellSort(arr);
System.out.println("排序后的数组:");
printArray(arr);
}
}
时间复杂度
希尔排序的时间复杂度依赖于增量序列的选择,不同的增量序列会影响排序的效率。
最坏情况: 如果增量序列选择得不当(例如选择的增量逐步减少为1),希尔排序的时间复杂度可能退化为 O(n²),与普通插入排序类似。
最佳情况: 如果增量序列选择得当(例如使用 Sedgewick 或 Hibbard 等增量序列),时间复杂度可以接近 O(n log n)。
平均情况: 平均情况下,时间复杂度大约是 O(n^1.3),比普通插入排序 O(n²) 更有效。
空间复杂度
O(1)