Python爬取研招网数据全流程解析:从需求到落地

一、项目背景与目标

中国研究生招生信息网(研招网)作为教育部直属的权威平台,承载着全国高校招生计划、专业目录、考试科目等核心数据。本文将以爬取"2025年北京市计算机专业招生信息"为例,演示如何通过Python构建高效爬虫系统,实现结构化数据采集与可视化分析。

 

二、技术选型与架构设计

1. 核心工具链

  • Requests + BeautifulSoup:基础HTTP请求与HTML解析
  • Scrapy框架:分布式爬取与Pipeline数据管道
  • Selenium:动态渲染页面处理
  • Pandas + Matplotlib:数据清洗与可视化

2. 系统架构图

请求层 → 解析层 → 存储层 → 分析层
│         │         │         │
Requests  BS4/XPath  CSV/MySQL  Pandas
│         │         │         │
Selenium  Scrapy    MongoDB   Matplotlib

三、关键实现步骤

1. 目标URL分析与参数构造

研招网专业目录查询接口采用动态参数机制:

base_url = "https://yz.chsi.com.cn/zsml/queryAction.do"
params = {
    "ssdm": "11",       # 北京代码
    "dwmc": "",         # 学校名称
    "mldm": "zyxw",     # 学术学位
    "yjxkdm": "0812",   # 计算机科学与技术代码
    "xxfs": 1,          # 全日制
    "pageno": 1         # 页码
}


2. 动态参数获取方案

通过抓包发现专业代码存储在:

https://yz.chsi.com.cn/zsml/pages/getZy.jsp

返回JSON结构示例:

[
    {"dm":"081200","mc":"计算机科学与技术"},
    {"dm":"083500","mc":"软件工程"}
]


3. 核心爬取代码实现

方案一:Requests+BeautifulSoup
import requests
from bs4 import BeautifulSoup
import pandas as pd

def fetch_major_data(params):
    headers = {
        "User-Agent": "Mozilla/5.0"
    }
    url = f"{base_url}?{'&'.join([f'{k}={v}' for k,v in params.items()])}"
    
    try:
        response = requests.get(url, headers=headers)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'lxml')
        
        # 定位数据表格
        table = soup.find('table', {'class': 'ch-table'})
        rows = table.find_all('tr')[1:]  # 跳过表头
        
        data = []
        for row in rows:
            cols = row.find_all('td')
            data.append({
                "学校": cols[0].get_text(strip=True),
                "院系所": cols[1].get_text(strip=True),
                "专业": cols[2].get_text(strip=True),
                "研究方向": cols[3].get_text(strip=True),
                "招生人数": cols[4].get_text(strip=True),
                "考试科目": cols[5].get_text(strip=True)
            })
        
        return pd.DataFrame(data)
    
    except Exception as e:
        print(f"爬取失败: {e}")
        return pd.DataFrame()

方案二:Scrapy框架实现
import scrapy
from ..items import ResearchItem

class MajorSpider(scrapy.Spider):
    name = "major_spider"
    allowed_domains = ["yz.chsi.com.cn"]
    
    def start_requests(self):
        base_params = {
            "ssdm": "11",
            "mldm": "zyxw",
            "yjxkdm": "0812"
        }
        
        for page in range(1, 10):  # 假设最多10页
            params = base_params.copy()
            params["pageno"] = page
            url = f"{base_url}?{'&'.join([f'{k}={v}' for k,v in params.items()])}"
            yield scrapy.Request(url, callback=self.parse)
    
    def parse(self, response):
        for tr in response.css('table.ch-table tr')[1:]:
            item = ResearchItem()
            item['school'] = tr.css('td:nth-child(1)::text').get()
            item['department'] = tr.css('td:nth-child(2)::text').get()
            item['major'] = tr.css('td:nth-child(3)::text').get()
            item['direction'] = tr.css('td:nth-child(4)::text').get()
            item['count'] = tr.css('td:nth-child(5)::text').get()
            item['subjects'] = tr.css('td:nth-child(6)::text').get()
            yield item

​这里插播一条粉丝福利,如果你正在学习Python或者有计划学习Python,想要突破自我,对未来十分迷茫的,可以点击这里获取最新的Python学习资料和学习路线规划(免费分享,记得关注) 


4. 反爬机制应对策略

1.IP代理池:使用scrapy-proxies中间件
2.User-Agent池
from fake_useragent import UserAgent
ua = UserAgent()
headers = {'User-Agent': ua.random}


3.请求间隔控制

import time
import random
time.sleep(random.uniform(1, 3))  # 1-3秒随机延迟


四、数据存储方案

1. CSV格式存储

df.to_csv('beijing_cs_majors_2025.csv', index=False, encoding='utf-8-sig')

2. MySQL数据库存储

import pymysql
from sqlalchemy import create_engine


engine = create_engine('mysql+pymysql://user:password@localhost:3306/research?charset=utf8mb4')
df.to_sql('majors', engine, if_exists='append', index=False)


五、数据分析与可视化

1. 招生规模统计

import matplotlib.pyplot as plt

# 按学校分组统计招生人数
school_counts = df.groupby('学校')['招生人数'].sum().sort_values(ascending=False)

plt.figure(figsize=(12, 6))
school_counts.head(10).plot(kind='bar', color='skyblue')
plt.title('北京市计算机专业招生规模TOP10')
plt.ylabel('招生人数')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()


2. 考试科目词云

from wordcloud import WordCloud
import jieba

# 合并所有考试科目
subjects = ' '.join(df['考试科目'].dropna().tolist())

# 中文分词
seg_list = jieba.cut(subjects)
wc_text = " ".join(seg_list)

# 生成词云
wc = WordCloud(
    font_path='simhei.ttf',
    background_color='white',
    width=800,
    height=600
).generate(wc_text)

plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.show()


六、项目优化方向

  1. 增量爬取:记录最后爬取时间戳,只获取更新数据
  2. 分布式架构:使用Scrapy-Redis实现多节点协作
  3. 智能解析:结合NLP技术处理非结构化数据
  4. API化输出:构建Flask/Django接口提供数据服务

通过本文的完整实现方案,读者可快速搭建研招网数据采集系统,并延伸至招生政策分析、考情预测等高级应用场景。建议在实施过程中重点关注目标网站的反爬策略更新,保持技术方案的可持续性。 

需要完整代码以及Python全套学习资料的宝子,可以扫描下方csdn官方微信二维码获娶↓ ↓ ↓ ↓ ↓ ↓ 

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值