非线性动力学与混沌题目8.1.13 激光模型

 专业课期末出题。题目如下:

        (激光模型)在练习题 3. 3. 1中我们介绍了激光

\begin{aligned}&\dot{n}=GnN-kn&&\dot{N}=-GnN-fN+p&&G,k,f>0\end{aligned}

式中,N(t)是激发原子的数量;n(t)是在激光场中光子的数量. 参数G是受激发射的增益系数,k是在光子镜像传输中,散射所造成的衰减率, f是白发发射的衰减率,p是泵的强度. 所有参数除了p都是正的. 

a)无量纲化系统.

b)找到并分类所有不动点.

c)画出系统在无量纲化后的参数(a,b)平面的稳定图.

(题目存在改动,省略了第三小问)

解:a)

        \begin{aligned} &\frac{\mathrm{d}n}{\mathrm{d}t}=GnN-kn\quad\frac{\mathrm{d}N}{\mathrm{d}t}=-GnN-fN+p \\ &\frac G{k^2}\frac{\mathrm{d}n}{\mathrm{d}t}=\frac{G^2nN}{k^2}-\frac{Gn}k\frac G{k^2}\quad\frac{\mathrm{d}N}{\mathrm{d}t}=-\frac{G^2nN}{k^2}-\frac{fGN}{k^2}+\frac{pG}{k^2} \\ &\tau=kt\quad x=\frac{Gn}{k}\quad y=\frac{GN}{k}\quad a=\frac{f}{k}\quad b=\frac{pG}{k^2} \\ &\frac{\mathrm{d}x}{\mathrm{d}\tau}=x(y-1)\qquad (1)\\&\frac{\mathrm{d}y}{\mathrm{d}\tau}=-xy-ay+b \qquad (2)\end{aligned}

        其中a>0,b的正负由p决定. 

b)

        令(1)(2)等于0,可得不动点(0,\frac{b}{a}), (b-a,1)

        Jacobin矩阵

        A=\begin{pmatrix}y-1&x\\[1ex]-y&-x-a\end{pmatrix},

        A_{\left(0,\frac{b}{a}\right)}=\begin{pmatrix}\frac{b}{a}-1&&0\\\\-\frac{b}{a}&&-a\end{pmatrix}\quad\Delta=a-b\quad\tau=\frac{b}{a}-1-a,

        故当a<b, 不稳定(鞍点);

        当a>b, b<a(1+a)时稳定;b>a(1+a)时不稳定. 故a>b时稳定.

        A_{(b-a,1)}=\begin{pmatrix}0&b-a\\-1&-b\end{pmatrix}\quad\Delta=b-a\quad\tau=-b.

        故当a>b, 不稳定(鞍点);

        当(0<)a<b, b>0时稳定;b<0时不稳定. 故a<b时稳定.

c)

        由b)可作相图如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值