图论-复杂网络 期末出题

1. 网络聚类系数

        考虑如下网络

1) 该网络是有向还是无向网络,判断依据是什么?

2) 网络中的节点数,边数分别是多少?

3) 网络中每个节点的度是多少,若是有向网络给出每个节点的出度和入度。

4) 给出该网络的邻接矩阵和Laplace矩阵。

5) 忽略网络中指示边方向的箭头,请计算每个节点的聚类系数和整个网络的平均聚类系数。

解:

1) 有向图;箭头。

2) 节点数5,边数7

3) 

节点入度 出度 
1321
2312
3422
4220
5202

4) 邻接矩阵

        \begin{bmatrix}0&0&1&0&0\\1&0&0&1&0\\0&1&0&1&0\\0&0&0&0&0\\1&0&1&0&0\end{bmatrix}

        ((1.3)表示有出度;(2,1)表示有出度;······)

        Laplace矩阵

\begin{bmatrix}2&0&-1&0&0\\-1&1&0&-1&0\\0&-1&2&-1&0\\0&0&0&2&0\\-1&0&-1&0&0\end{bmatrix}

        (对角元表示该节点的总出度)

5) 

节点邻居节点

(邻居节点)

实际构成的边数

理论构成的边数聚类系数
12,5,323*2/2 = 32/3
21,3,4232/3
31,2,4,5361/2
42,3111
51,3111
平均聚类系数: \begin{aligned}&\frac{\frac{2}{3}+\frac{2}{3}+\frac{1}{2}+1+1}{5}=\frac{23}{30}\end{aligned}
2. 网络的拓扑特征
  1. 随机图网络(Random-graph networks)的3个重要拓扑特征:

    • 随机连接:在随机图网络中,节点之间的连接是 随机方式建 立的,没有特定的规则或模式。
    • 短平均路径长度:尽管连接是随机的,但随机图网络通常具有 较短的平均路径长度,这意味着节点之间的信息传播速度较快。
    • 低聚类系数:在随机图网络中,节点的聚类系数通常较低,这 意味着节点的邻居之间很少存在连接。
  2. 小世界网络(Small-world networks)的3个重要拓扑特征:

    • 高聚类系数:小世界网络具有较高的聚类系数,即节点的邻居 之间存在较多的连接,形成两局部的聚集。
    • 短平均路径长度:与随机图网络类似,小世界网络也具有较短 的平均路径长度,这意味着节点之间的信息传播速度较快。
    • 高度的局部聚类和全局连通性:小世界网络同时具有高度的 局部聚类和全局连通性,这使得它在信息传播和同步方面具有良好的 性能。
  3. 无标度网络(Scale-free networks)的3个重要拓扑特征:

    • 幂律度数分布:无标度网络的度数分布遵循幂律分布,即存在 少数节点具有非常高的度数,右大多数节点具有较低的度数。
    • 高度的鲁棒性:无标度网络对于随机节点的删除具有较高的 鲁棒性,即它们能够保持较好的连通性和功能性。
    • 无尺度特性:无标度网络的拓扑结构在不同的尺度上被具有 相似的特征,这意味着它们在不同的层,上被具有类似的度数分布和 结构特征。
3. 网络最大流.

        图为一个网络N, 弧上的数值表示该弧的弧容量,假设初始可行流为零值流,用找可增路的方法求出该网络的一个最大流.

"初始可行流"是指满足以下条件的流:

  1. 流量非负:
    对于网络中的每一条边(i,j),其流量f(i,j)必须大于或等于0。

  2. 符合容量限制:
    对于网络中的每一条边(i,j),其流量f(i,j)必须小于或等于该边的容量c(i,j)。

  3. 满足流量平衡约束:
    对于网络中的每个节点i(除源点s和汇点t之外),进入节点i的总流量与离开节点i的总流量相等。

在一些优化算法中,如最大流问题的预处理步骤,人们通常会假设初始流为零值流,也就是所有边的初始流量都设为0。这样的零值流显然是一个初始可行流,为后续的优化计算提供了一个合理的起点。

        

最大流

  • 最大流是指在一个有向图(网络)中,从源点s到汇点t的最大可能流量。也就是说,在满足网络容量约束的情况下,从源点s到汇点t的最大传输量。

        

求解最大流

  • 一种常用的求解最大流的方法是"可增路的方法"(augmenting path method)。它包括以下步骤:
    1. 找到一条从源点s到汇点t的可增路径(augmenting path)。
    2. 沿着这条可增路径增加流量,直到某条边的流量达到容量上限。
    3. 重复步骤1)和2),直到找不到任何可增路径为止。
    4. 此时的流量就是网络的最大流。

解:

v_5 \rightarrow v_1 \rightarrow v_3 \rightarrow v_t 剩余容量:3

v_5 \rightarrow v_2 \rightarrow v_4 \rightarrow v_t剩余容量:2

总流量:5

v_1 \rightarrow v_3 \rightarrow v_t 剩余容量:4

v_1 \rightarrow v_3 \rightarrow v_4 \rightarrow v_t  剩余容量:1

总流量:5

v_2 \rightarrow v_4 \rightarrow v_t  剩余容量:2

总流量:2

v_3 \rightarrow v_t 剩余容量:5

总流量:5

v_4 \rightarrow v_1 \rightarrow v_3 \rightarrow v_t 剩余容量:1

v_4 \rightarrow v_3 \rightarrow v_t 剩余容量:3

v_4 \rightarrow v_t剩余容量:2

总流量:6

故网络的最大流为6.

4. 二部图和无奇圈

        𝑛(𝑛 ≥ 2)阶无向图𝐺是二部图当且仅当𝐺中无奇圈

二部图

        二部图中的顶点可以被分成两组,每条边都连接这两组中的顶点。

        二部图由以下两个条件定义:

  1. 顶点集 V 可以被划分为两个互不相交的子集 X 和 Y。
  2. 每条边都连接 X 中的一个顶点和 Y 中的一个顶点。也就是说,不存在连接 X 中两个顶点或 Y 中两个顶点的边。

(注:二部图中顶点数和边数并不一定相等。例如:        

  • 假设有一个二部图 G,U 中有 3 个顶点,V 中有 2 个顶点。
  • 那么图 G 的顶点总数是 3 + 2 = 5 个。
  • 但图 G 中的边数可以是 0 条、1 条、2 条、3 条、4 条、6 条等任意非负整数。
  • 顶点数和边数并不一定相等。)        

无奇圈

        它描述了一个图中是否存在一个可以穿过所有顶点的回路,该回路不会经过任何顶点两次。

        一个无向图G具有无奇圈的性质当且仅当满足以下条件:

  1. 图G是连通的,即任意两个顶点之间都存在路径相连。
  2. 图G中每个顶点的度数都是偶数。

证明:

        必要性:当G=<V_1,V_2,E>是二部图时,𝐺中的任意一条回路的各边必须往返于𝑉1, 𝑉2之间,因此其回路必由偶数条边组成.

        充分性:

        (证一)

  1. 首先, 由于 G 是无奇圈图, 根据无奇圈图的定义, 我们知道 G 是连通图,且每个顶点的度数都是偶数。

  2. 接下来, 我们给 G 中的每个顶点染色, 使用两种颜色(比如红色和蓝色)进行染色。

    • 从任意一个顶点 v 开始, 将其染为红色。
    • 然后, 将与 v 相邻的所有顶点染为蓝色。
    • 接着, 将与蓝色顶点相邻的顶点染为红色, 以此类推, 直到所有顶点都被染色。
  3. 由于 G 是连通图, 所有顶点都能被染色。

    • 而且, 由于每个顶点的度数都是偶数, 所以每个顶点的相邻顶点必定是另一种颜色。
    • 因此, G 中所有顶点都被划分成了两个互不相交的子集, 每条边都连接这两个子集中的顶点。
  4. 综上所述, 我们证明了在无奇圈图 G 中, 如果 G 的阶数 n (n ≥ 2), 那么 G 一定是二部图。

5. 握手定理

        求证:

        (1). (握手定理)在任何无向图中,所有顶点数的度之和等于边数的两倍,即

\sum\limits_{v\in V}d\left(v\right)=2m

m为无向图的边数。

        (2). 在任何图当中,奇数顶点的个数是偶数。

证明:

        (1). 

        对于无向图 G 中的每条边(u, v),它同时贡献了顶点 u 和顶点 v 的度数。

        因此我们可以把图 G 中所有顶点的度数之和视为对每条边进行"两次握手"的结果。

        设图 G 有 n 个顶点, m 条边。那么图 G 中所有顶点的度数之和可以表示为:∑(度数(v)) = 2m, 即

\sum\limits_{v\in V}d\left(v\right)=2m

        (2).考虑一个任意的图G。

        设G中有n个顶点,其中有k个顶点的度数是奇数。我们知道每条边都同时贡献了两个顶点的度数。根据"握手定理",所有顶点的度数之和等于图中边数的两倍。即

Σ(度数(v)) = 2m, 其中m是图G中的边数。

        现在我们把奇度顶点和偶度顶点分开考虑:

  •                 奇度顶点的度数之和为k * (奇数)
  •                 偶度顶点的度数之和为(n-k) * (偶数)

        根据"握手定理",有:

  •                 k * (奇数) + (n-k) * (偶数) = 2m

        由此可得,k,即图G中奇度顶点的个数,也必定是偶数。

6. 关联矩阵

        画出一个最大度为 4,最小度为 3,点数为 5 的图,并写出其关联矩阵,邻接矩阵和拉普拉斯阵。

关联矩阵:

        

        对于一个无向图 G = (V, E),其关联矩阵 A 是一个 |V| × |E| 的矩阵,其中:

  •                 如果顶点 v 与边 e 相关联(即 v 是 e 的端点之一),则 A[v, e] = 1
  •                 否则 A[v, e] = 0

解:

关联矩阵:

        \left.M\left(G\right)=\left[\begin{array}{cccccccc}1&0&0&1&1&0&0&0\\1&1&0&0&0&1&0&0\\0&1&1&0&0&0&1&0\\0&0&1&1&0&0&0&1\\0&0&0&0&1&1&1&1\end{array}\right.\right],

邻接矩阵:

        A(G)=\left[\begin{array}{ccccc}0&1&0&1&1\\1&0&1&0&1\\0&1&0&1&1\\1&0&1&0&1\\1&1&1&1&0\end{array}\right]

Laplace矩阵:

        L(G)=\left[\begin{array}{ccccc}3&-1&0&-1&-1\\-1&3&-1&0&-1\\0&-1&3&-1&-1\\-1&0&-1&3&-1\\-1&-1&-1&-1&4\end{array}\right]

7. 完美匹配

        .求证:若𝐺是非空𝑘(𝑘 ≥ 1)-正则二部图,则𝐺有完美匹配。

非空正则二部图

        

        设二部图 G = (U, V, E),其中 U 和 V 是两个不相交的顶点集合。

  1. 若 G 是非空的,表示 G 中至少有一个顶点和一条边。

  2. 若 G 是正则的,则意味着

                节点由两个集合组成,且两个集合内部没有边的图

                U中所有顶点的度数都是k

                V中所有顶点的度数也都是k

        

完美匹配

        每个顶点v都恰好与M中的一条边关联,即每个顶点的度数都为1。

        

霍尔定理

        设 G = (U, V, E) 是一个二部图,其中 U 和 V 是两个不相交的顶点集合。

G 存在完美匹配的充要条件是:

        对于 U 的任意子集 S,其在 V 中的邻居顶点集合的基数不小于 S 的基数。

也就是说,对于 U 中任意的一个顶点子集 S,V 中与 S 相连的顶点数必须大于或等于 S 中顶点的数量。

        形式化地表述就是:

        对于任意的 U 的子集 S,有 |N(S)| ≥ |S|,其中 N(S) 表示 S 在 V 中的邻居集合。

证明:

(方法1)

  1. 设G = (U, V, E)是一个非空的k-正则二部图,其中U和V是两个不相交的顶点集合。

  2. 由于G是k-正则的,意味着:

    • U中所有顶点的度数都是k
    • V中所有顶点的度数也都是k
  3. 由于G是非空的,至少有一个顶点和一条边。

  4. 根据二部图的定义,G中任意一条边都连接U中的一个顶点和V中的一个顶点。

  5. 记U的顶点数为n,V的顶点数为m。

  6. 由于每个U中的顶点degree=k,而U中总共有n个顶点,所以U中所有边的数量为nk。

  7. 同理,V中所有边的数量也为mk。

  8. 由于每条边同时属于U和V,所以nk = mk,即n = m。

  9. 现在我们可以构造一个完美匹配M如下:

    • 对于U中的每个顶点u,在V中找一个与u相连的顶点v,将边(u,v)加入M。
    • 由于n = m,每个U中的顶点都能找到一个V中的顶点与之配对,构成了一个完美匹配。
8. 平均度

        若图𝐺的平均度\overline{d(G)}=\frac{\sum_{v\in V}d(v)}n<3, 求证:𝐺有一个度数小于等于 1 的顶点,或者有一个邻点度数小于等于 5 度的 2 度点

邻点度数

        对于顶点 v ∈ V,它的邻点度数 ND(v) 定义为:

ND(v) = Σ deg(u)

证明:设𝐺没有一个度数小于等于 1 的顶点,也没有一个邻点度数小 于等于 5 度的 2 度点. 即𝐺的每个顶点度数大于等于 2,且每个2度点的邻点度数大于 5.

初始赋值:每个点初始赋值为d(v), 则初始权值总和为\Sigma _{v \in V} d(v) < 3n.

权转移规则:每个 2 度点从每个邻点得到\frac{1}{2}

权转移后每个点度数均大于等于 3,从而\Sigma _{v \in V} d(v) \geq 3n.,矛盾.所 𝐺有一个度数小于等于 1 的顶点,或者有一个邻点度数小于等于 5 度的二度点.

9. 最大匹配数

        写出图 G 的最小边覆盖数,最小点覆盖数,最大独立集数与割点, 写出其最大匹配。

最小边覆盖数        

  • 在一个无向图G中,边覆盖是一个边的集合,使得每个顶点至少相连接一条边。
  • 最小边覆盖数是图G中最小的边覆盖集的大小。

最小点覆盖数(Minimum Vertex Cover)

  • 点覆盖是一个顶点的集合,使得图G中每条边至少与这些顶点中的一个相连。
  • 最小点覆盖数是图G中最小的点覆盖集的大小。

最大独立集数(Maximum Independent Set)

  • 独立集是一个顶点的集合,使得图G中任意两个顶点都不相邻。
  • 最大独立集数是图G中最大的独立集的大小。

割点(Articulation Point)

  • 定义:在一个连通图G中,如果删去某个顶点会使图G失去连通性,则该顶点就是割点。

最大匹配(Maximum Matching)

  • 定义:在一个无向图G中,匹配是一个边的集合,使得任意两条边都没有公共顶点。
  • 最大匹配是图G中包含最多边的匹配。

解:

        5;3;5;{v_8};{v_3v_4,v_5v_8,v_6v_7}

10. 李雅普诺夫函数

        考虑洛伦兹(Lorenz)系统

\begin{aligned}&\dot{x}=\sigma(y-x)\\&\dot{y}=rx-y-xz\\&\dot{z}=xy-bz\end{aligned}

式中,参数\sigma > 0,r>0,b>0, \sigma是普朗特(Prandtl)数, r是瑞利数, b没有特定的称呼。 求:构造李雅普诺夫函数分析原点的全局稳定性。

李雅普诺夫函数分析全局稳定性

  1. 构造李雅普诺夫函数 V(x)

    • 选择一个适当的李雅普诺夫函数候选,它应该满足 V(x) > 0 且 V(x_e) = 0, 其中 x_e 是平衡点。
  2. 计算李雅普诺夫函数导数 dV/dt

    • 对李雅普诺夫函数求导,得到 dV/dt。
    • 导数表达式应与系统动力学方程相关。
  3. 分析 dV/dt 的负定性

    • 如果 dV/dt ≤ 0 对于所有的 x,则 dV/dt 是负半定的。
    • 如果 dV/dt < 0 对于所有的 x ≠ x_e,则 dV/dt 是负定的。
  4. 利用 LaSalle 不变集原理

    • 如果 dV/dt 是负半定的,则系统的所有轨线都会收敛到 LaSalle 不变集内。
    • 如果 dV/dt 是负定的,则系统的所有轨线都会收敛到平衡点 x_e。
  5. 得到全局稳定性结论

    • 如果 V(x) 是正定的,dV/dt 是负半定的(或负定的),则系统在 x_e 处是全局稳定的。

解:

       当r<1, t\to\infty时,趋于原点,原点是全局稳定的。故当r<1时,不存在极限环或混沌。

        考虑

        V(x,y,z)=\frac{1}{\sigma}x^2+y^2+z^2,

        显然V(x,y,z) \geq 0V(0,0,0) = 0

        则

\begin{aligned} \frac{1}{2}\dot{V}& =\frac{1}{\sigma}x\dot{x}+\dot{y}y+\dot{z}z \\ &=(yx-x^{2})+(ryx-y^{2}-xyz)+(zxy-bz^{2}) \\ &=(r+1)xy-x^{2}-y^{2}-bz^{2} \end{aligned}

\frac{1}{2}\dot{V}=-\Big[x-\frac{r+1}{2}y\Big]^2-\Big[1-\Big(\frac{r+1}{2}\Big)^2\Big]y^2-bz^2

        当r<1(x,y,z)\neq(0,0,0),等号右侧严格小于0.当且仅当(x,y,z)=(0,0,0),\dot{V}=0

        故此时原点全局稳定。

11. 周期-2环

        证明当且仅当r>3时,逻辑斯谛(Logistic)映射

x_{n+1}=rx_n(1-x_n)

有一个周期-2 环。

证明:

        周期-2环存在,即

\exists p,q, s.t. f(p)=q,f(q)=p

        或

        \exists f(f(p))=p

        即

        r^2x(1-x)\left[1-rx(1-x)\right]-x=0

        显然有x^* = 0,x^*=1-\frac{1}{r},另一对根为

\frac{r+1\pm\sqrt{\left(r-3\right)\left(r+1\right)}}{2r}

        当r>3, 两根都是实数,存在周期-2环;

        当r=3, 此处发生周期-2环的分岔;

        当r<3, 周期-2环不存在。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值