【Java】哈希表


一、概念

不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函
数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素

当向该结构中:
插入元素
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(HashTable)(或者称散列表)

举例:数组元素{1,7,6,4,5,9}
在这里插入图片描述
用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快

二、哈希冲突

2.1概念

当我们插入11的时候,会发现通过哈希函数计算出的要插入的位置等于1,而此时该位置已经有元素存在,即:不同关键字通过相同哈希函数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞

2.2设计合理的哈希函数-避免冲突

首先,我们需要明确一点,由于我们哈希表底层数组的容量往往是小于实际要存储的关键字的数量的,这就导致一个问题,冲突的发生是必然的,但我们能做的应该是尽量的降低冲突率
引起哈希冲突的一个原因可能是:哈希函数设计不够合理
哈希函数设计原则:
哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
哈希函数计算出来的地址能均匀分布在整个空间中
哈希函数应该比较简单
常用的哈希函数
1.直接定制法
取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B 优点:简单、均匀 缺点:需要事先知道关键字的分布情况 使用场景:适合查找比较小且连续的情况
2.除留余数法
设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址
以上两种是比较常用的方法,还有其他方法感兴趣的可以自行查阅相关资料
注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突

2.3调节负载因子-避免冲突

负载因子 α = 哈希表中元素个数 / 哈希表的长度
哈希表的长度没有扩容是定长的,即 α 与 元素的个数是成正比的,当 α 越大,即代码哈希表中的元素个数越多,元素越多,发生哈希冲突的概率就增加了,因此 α 越小,哈希冲突的概率也就越小。所以我们应该严格控制负载因子的大小,在 Java 中,限制了负载因子最大为 0.75,当超过了这个值,就要进行扩容哈希表,重新哈希(重新将各个元素放在新的位置上)

当冲突率达到一个无法忍受的程度时,我们需要通过降低负载因子来变相的降低冲突率
已知哈希表中已有的关键字个数是不可变的,那我们能调整的就只有哈希表中的数组的大小

2.4闭散列-冲突解决(了解)

解决哈希冲突两种常见的方法是:闭散列和开散列
这里我们先讲闭散列
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。 那么如何寻找下一个空位置呢?
1.线性探测
线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止
插入
通过哈希函数获取待插入元素在哈希表中的位置
如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到
下一个空位置,插入新元素
采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他
元素的搜索。比如删除元素1,如果直接删除掉,11查找起来可能会受影响。因此线性探测采用标
记的伪删除法来删除一个元素
2.二次探测
线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为: Hi= ( H0+i^2 )% m, 或者:Hi= (H0 - i ^2)% m。其中:i = 1,2,3…, H0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小
当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不
会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容
所有:闭散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷

2.5开散列/哈希桶-冲突解决(重点掌握)

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中,简单来说就是数组+链表的结构
如图所示:
在这里插入图片描述
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。
开散列,可以认为是把一个在大集合中的搜索问题转化为在小集合中做搜索了

三、代码实现

3.1成员变量及方法的设定

public class HashBuck2 <
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值