Python实现Jaccard相似度算法
Jaccard相似度算法是一种常用的文本相似度计算方法,通常用于对比两个文本集合之间的相似性。该算法基于集合论的思想,通过计算两个集合之间的交集和并集大小来确定它们之间的相似程度。在Python中,我们可以轻松地实现这种算法。
首先,我们需要定义一个函数来计算两个文本之间的Jaccard相似度。下面是相应的源代码:
def jaccard_similarity(text1, text2):
set1 = set(text1.split()
本文介绍了如何在Python中实现Jaccard相似度算法,这是一种衡量文本集合相似性的方法。通过计算两个集合的交集和并集,得出它们的相似度。文中给出了示例代码,展示如何计算两个文本的相似度以及一个文本列表中所有文本对的相似度矩阵。
Python实现Jaccard相似度算法
Jaccard相似度算法是一种常用的文本相似度计算方法,通常用于对比两个文本集合之间的相似性。该算法基于集合论的思想,通过计算两个集合之间的交集和并集大小来确定它们之间的相似程度。在Python中,我们可以轻松地实现这种算法。
首先,我们需要定义一个函数来计算两个文本之间的Jaccard相似度。下面是相应的源代码:
def jaccard_similarity(text1, text2):
set1 = set(text1.split()
3855

被折叠的 条评论
为什么被折叠?
