
使用SVM和特征选择提升模型性能
UCI 数据库中的声呐(Sonar) 数据集记录了在使用声呐探测岩石或矿物过程的208条数据,包含两个类别(矿物-mine、岩-rock),每个数据包含60个属性,表示从不同角度捕获的声呐信号的强度。然后,请采用合适的特征选择方法对数据集进行处理,降低特征的数量,再使用支持向量机在该数据集上建立分类模型,并比较特征选择前后分类模型性能的变化情况。本文以《Python数据挖掘实战微课版》一书中一道习题为基础,以Sonar数据集为例,展示如何使用支持向量机(SVM)和特征选择技术来提升模型的性能。














