编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」 定义为:
- 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
- 然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
- 如果这个过程 结果为 1,那么这个数就是快乐数。
如果 n 是 快乐数 就返回 true ;不是,则返回 false 。
示例 1:
输入:n = 19 输出:true 解释: 12 + 92 = 82 82 + 22 = 68 62 + 82 = 100 12 + 02 + 02 = 1
示例 2:
输入:n = 2 输出:false
提示:
1 <= n <= 231 - 1
方法1:哈希表(时间复杂度O(logn))
题目中提到重复此过程后结果可能是无限循环但始终变不到1,也可能是返回1结束循环,此时这个数才是快乐数。从无限循环这个条件我们可以提取出元素重复则返回false这个信息,此环节可考虑使用哈希表。
代码实现
class Solution {
public boolean isHappy(int n) {
Set<Integer> record = new HashSet<>();
while(n != 1) {
if(record.contains(n)){
return false;
}
record.add(n);
n = getSum(n);
}
return true;
}
public int getSum(int n) {
int res = 0;
while(n > 0) {
int temp = n % 10;
res += temp * temp;
n = n/10;
}
return res;
}
}
方法2:快慢指针
慢指针从首位置(取值为n)开始走,快指针从第二个位置开始走,快指针每次走两位,慢指针每次走一位,若进入循环,慢指针总会遇到快指针的,从而判断是否是快乐数。
代码实现:
class Solution {
public boolean isHappy(int n) {
int slow = n;
int fast = getSum(n);
// 防止取值为1时,slow == fast 无法进入循环
if(fast == 1 || slow == 1){
return true;
}
while(slow != fast) {
if(fast == 1 || slow == 1){
return true;
}
fast = getSum(getSum(fast));
slow = getSum(slow);
}
return false;
}
public int getSum(int n) {
int res = 0;
while(n > 0) {
int temp = n % 10;
res += temp * temp;
n = n/10;
}
return res;
}
}
代码优化(leetCode题解区)
class Solution {
public int getNext(int n) {
int totalSum = 0;
while (n > 0) {
int d = n % 10;
n = n / 10;
totalSum += d * d;
}
return totalSum;
}
public boolean isHappy(int n) {
int slowRunner = n;
int fastRunner = getNext(n);
// 循环内完成满足循环条件的运算
while (fastRunner != 1 && slowRunner != fastRunner) {
slowRunner = getNext(slowRunner);
fastRunner = getNext(getNext(fastRunner));
}
// 运算结果满足题意的返回true,否则返回false,通过返回值判断是否满足题意
return fastRunner == 1;
}
}
106

被折叠的 条评论
为什么被折叠?



