python算法从入门到实践(章一):枚举(暴力)算法 本文基于《Python算法从入门到实践》薛小龙老师编著的这本书,佐以笔者的思考而成,主要内容为时空复杂度的简单介绍,枚举算法的详细阐述与应用。(附有完整代码)
python深度学习·神经网络·快速入门 本篇文章基于《Python深度学习》[英]尼格尔·路易斯 这本书上的知识,并结合笔者的思考而著文章中会提到深度学习的基础知识,常见的基础深度学习算法,深度学习numpy等常用包的导入,以及一个小型的练习案例。
Matlab入门之旅(速学笔记,2~3h即可) 边看边做,才能达到速学效果(有代码基础c/python等,学得可能会嘎嘎快)笔者使用的是R2023a版,但是这个教程不涉及版本差异,所以无所谓文末附R2023b下载链接,但笔者建议支持正版 ! v !
高等数学下·A2(预习版)章三-多元函数积分学 篇幅较长,建议准备好草稿纸和笔还有水,边学边算,高数开始难起来了 (笔者也是预习得很疲惫RvR) 二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。
虚拟机、物理机和docker技术(通俗易懂版) 更通俗地比喻,考试的时候会发三张纸,一张试卷,一张答题卡,一张草稿纸,物理机就是答题卡,直接影响你的作答情况和心情,虚拟机就是草稿纸,乱涂乱画(使劲造)也没事,docker容器技术就是试卷,在上面打草稿,虽然方便,但是可能不小心就把题目改了,影响到答题卡(物理机)的作答,所以还是推荐使用草稿纸(虚拟机)打草稿,当然不排除有的时候,docker可能会更方便一点。
高等数学下·A2(预习版)章一·多元函数的微分 多元函数的微分四种常见类型及方法a.直接带入型limf(x,y) 当x,y可合理代入时,,即得结果b.无穷小×有界函数(e.g.三角函数)0代指在(x0,y0)处,无限接近0的多元函数此时回忆起高数上学期的咒语“无穷小×有界=0”,c.有理化型(带根号型)lim f(x,根号y)运用公式,,之后再用其他方法d.等价无穷小型limf(x,y) 运用(高数上学期第一章有讲),,之后约分代入...等其他方法2.判断极限是否存在limf(x,y)