时间序列预测 | Matlab实现AR、ARMA、ARIMA时间序列预测

本文介绍如何使用Matlab实现AR、ARMA和ARIMA时间序列预测。AR模型基于历史值预测未来,ARIMA则结合差分处理非平稳序列。参数选择通过AIC、BIC等准则,适用于非平稳序列的预测分析。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述

文章概述

时间序列预测 | Matlab实现AR、ARMA、ARIMA时间序列预测
自回归模型(Autoregressive Model),通常简称为AR模型,是一种用于时间序列分析和预测的统计模型。它基于时间序列自身的历史值来预测未来值,通过将当前时刻的观测值与前一时刻的观测值之间的关系进行建模。
AR模型的基本思想是,当前时刻的值可以由之前时刻的值预测得到。具体来说,一个AR§模型将当前时刻的值表示为过去 p 个时刻的线性组合。AR模型的参数估计通常使用最小二乘法或最大似然法进行。选择合适的阶数 p 也是一个重要的问题,可以通过信息准则(如AIC、BIC)或交叉验证等方法来确定。
虽然AR模型可以捕捉序列的自相关关系,但它有一定的局限性,特别是对于非平稳时间序列的建模效果可能不佳。在这种情况下,可以结合差分运算使序列平稳,或者使用ARIMA模型,其中I表示差分(Integrated)的意思,用于处理非平稳性。
总之,AR模型是时间序列预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值