CGAL点云上的采样方法
点云处理是计算机视觉和机器学习领域中的一个基本问题。点云是由很多个点的集合构成的,如何对这些点进行处理是非常重要的。在点云处理中,点云上采样是一个关键的步骤之一,可以有效的降低点云的密度,提高点云的处理效率。
在CGAL库中提供了丰富的点云处理工具,其中点云上采样就是其中的一个功能。下面我们将简要介绍如何在CGAL库中进行点云上采样,并给出相应的代码实现。
- 点云上采样方法介绍
点云上采样的目的是从原始稠密的点云中提取一部分密度较小的点,使得新的点云能够更好的代表原始点云的特征。在CGAL中,提供了多种不同的点云上采样方法,包括基于网格(grid)、随机采样、泊松采样等。不同的采样方法适用于不同的场景,下面我们会分别进行介绍。
- 基于网格的点云上采样
基于网格的点云上采样方法是一种非常常见的点云上采样方法。其基本思想是将点云空间划分为若干个小网格,然后在每个小网格中选择一个点作为采样点。这种方法简单、高效,适用于大部分场景。
在CGAL中,提供了以下代码实现:
#include <CGAL/Point_set_3/Random_point_sampler.h>
//定义点云类型
typedef CGAL::Exact_predicates_
本文介绍了CGAL库中点云上采样的三种方法:基于网格、随机采样和泊松采样。点云上采样能降低点云密度,提高处理效率。文中提供每种方法的代码实现,帮助理解并应用到实际项目。
订阅专栏 解锁全文

1026

被折叠的 条评论
为什么被折叠?



