基于语音分帧+端点检测+音高提取+DTW算法的歌曲识别(Matlab源码)

161 篇文章 45 订阅 ¥59.90 ¥99.00
本文介绍了基于Matlab的歌曲识别方法,涉及语音分帧、端点检测、音高提取和动态时间规整(DTW)算法。通过短时傅里叶变换进行语音分帧,能量和过零率检测端点,自相关法提取音高,最后使用DTW进行模式匹配,实现歌曲识别。
摘要由CSDN通过智能技术生成

基于语音分帧+端点检测+音高提取+DTW算法的歌曲识别(Matlab源码)

近年来,随着深度学习和信号处理技术的发展,歌曲识别成为了一个热门的研究方向。歌曲识别涉及到多个步骤,如语音分帧、端点检测、音高提取和模式匹配等。本文将介绍基于Matlab的歌曲识别方法,并提供相应的源代码。

  1. 语音分帧
    语音信号是连续的,为了方便处理,首先需要将其分成多个短时片段。常见的方法是采用短时傅里叶变换(STFT)将信号转换到频域,然后再将频域信号切割成帧。以下是Matlab代码示例:
function frames = divide_into_frames(signal, frame_length, frame_shift)
    signal_length = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值