下面内容摘录自《R 语言与数据科学的终极指南》专栏文章的部分内容,每篇文章都在 5000 字以上,质量平均分高达 94 分,看全文请点击下面链接
欢迎订阅我们专栏
.......前面部分请点击上面链接看原文(原文8251字)
一、字符串检测和位置查找
1、检测字符串是否包含特定模式
str_detect()
函数用于判断字符串中是否包含指定的模式。例如,我们可以用它来检测字符串country
中是否包含子串“an”。
library(stringr)
country <- c("China", "American", "Japan", "Russian")
str_detect(country, "an")
结果为:
[1] FALSE TRUE TRUE FALSE
这表明“American”和“Japan”中包含了“an”,而“China”和“Russian”中不包含。
假设我们有一组包含文本的字符串,需要检测每个字符串中是否包含“2024”这一特定年份。我们可以使用str_detect()
函数来实现这一需求:
library(stringr)
texts <- c("The project deadline is 2024.",
"Plans for 2025 are already underway.",
"The conference is scheduled for early 2021.",
"No specific year mentioned.")
# 检测是否包含“2024”
contains_year <- str_detect(texts, "2024")
contains_year
结果为:
[1] TRUE FALSE FALSE FALSE
结果显示,第一条字符串包含了“2024”,第二条字符串中则不包含“2024”,第三条字符串也不包含“2024”,第四条字符串又不包含“2024”,这样的结果也能清晰地看出来。
2、 获取匹配模式成功的字符索引
str_which()
函数返回匹配模式成功的字符索引。对于上述示例,str_which()
可以这样使用:
str_which(country, "an")
结果为:
[1] 2 3
这说明“American”和“Japan”是包含“an”的字符串,其索引分别是2和3。
3、统计匹配模式的数量
str_count()
函数可以用来统计匹配模式在每个字符串中出现的次数。例如:
str_count(country, "an")
输出结果为:
[1] 0 1 1 0
这里“American”和“Japan”中各有1个“an”,而其他字符串中没有。
4、应用例子
下面我们将使用一个模拟的医疗记录数据集,其中包含各种病历记录,我们将用这些函数来查找和统计记录中包含特定症状或疾病的条目。
library(stringr) # 加载stringr包,以便使用字符串处理函数
# 示例医疗记录数据,包含多个病人的症状描述
records <- c("Patient 1: Diagnosed with type 2 diabetes and diabetes complications.",
"Patient 2: No history of diabetes, but has high cholesterol.",
"Patient 3: Type 1 diabetes and diabetes management issues.",
"Patient 4: History of asthma and seasonal allergies.",
"Patient 5: Diabetes management plan reviewed in last visit, diabetes treatment was updated.")
# 使用str_which()函数找出包含“diabetes”这一模式的记录的索引
# str_which()返回的是符合条件的记录的索引位置
indices_with_diabetes <- str_which(records, "diabetes")
# 使用str_count()函数计算每条记录中“diabetes”出现的次数
# str_count()返回的是一个向量,其中每个元素表示对应记录中“diabetes”的出现次数
count_diabetes <- str_count(records, "diabetes")
# 根据之前得到的索引提取包含“diabetes”的记录
# records_with_diabetes中包含了所有包含“diabetes”的记录
records_with_diabetes <- records[indices_with_diabetes]
# 使用索引提取“diabetes”出现次数
# counts_in_records中包含了对应记录中“diabetes”的出现次数
counts_in_records <- count_diabetes[indices_with_diabetes]
# 打印结果:遍历每条包含“diabetes”的记录,并显示记录的索引、内容以及“diabetes”的出现次数
for (i in seq_along(records_with_diabetes)) {
# 使用sprintf()格式化字符串,将记录的索引、内容和出现次数插入到打印的文本中
cat(sprintf("Record %d: \"%s\" contains 'diabetes' %d time(s).\n",
indices_with_diabetes[i], records_with_diabetes[i], counts_in_records[i]))
}
结果为:
Record 1: "Patient 1: Diagnosed with type 2 diabetes and diabetes complications." contains 'diabetes' 2 time(s).
Record 2: "Patient 2: No history of diabetes, but has high cholesterol." contains 'diabetes' 1 time(s).
Record 3: "Patient 3: Type 1 diabetes and diabetes management issues." contains 'diabetes' 2 time(s).
Record 5: "Patient 5: Diabetes management plan reviewed in last visit, diabetes treatment was updated." contains 'diabetes' 1 time(s).
二、提取和匹配模式
1、提取匹配模式的第一个值
.......后面部分请看原文
欢迎订阅我们专栏,深度系统地学习R语言。
为帮助大家更出色地掌握临床统计、数据挖掘以及人工智能建模的入门知识和应用,由于众多同学在计算机编程上经验欠缺,特此开设《R 语言与数据科学的终极指南》专栏。该专栏每周至少会定期更新三篇,直到整个专栏更新完成。每篇文章都在 5000 字以上,质量平均分高达 94 分。要提醒大家的是,每结束一个章节,专栏的优惠力度就会减小,当下正是订阅的最佳优惠时段,诚邀各位积极订阅!
专栏《R 语言与数据科学的终极指南》链接:https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482