用R语言做字符串检测和位置查找

下面内容摘录自《R 语言与数据科学的终极指南》专栏文章的部分内容,每篇文章都在 5000 字以上,质量平均分高达 94 分,看全文请点击下面链接

4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客文章浏览阅读3次。stringr包中的字符串匹配函数为文本处理和数据清洗提供了强大的工具。通过掌握这些函数,我们可以高效地执行各种字符串操作任务,包括检测、提取、统计和替换。无论是在数据清洗、分析还是其他文本处理任务中,stringr的功能都能帮助我们更加轻松地处理复杂的字符串操作需求。https://blog.csdn.net/2301_79425796/article/details/141230747

欢迎订阅我们专栏

.......前面部分请点击上面链接看原文(原文8251字)

一、字符串检测和位置查找

1、检测字符串是否包含特定模式

str_detect()函数用于判断字符串中是否包含指定的模式。例如,我们可以用它来检测字符串country中是否包含子串“an”。

library(stringr)
country <- c("China", "American", "Japan", "Russian")
str_detect(country, "an")

结果为:

[1] FALSE TRUE TRUE FALSE

这表明“American”和“Japan”中包含了“an”,而“China”和“Russian”中不包含。

假设我们有一组包含文本的字符串,需要检测每个字符串中是否包含“2024”这一特定年份。我们可以使用str_detect()函数来实现这一需求:

library(stringr)

texts <- c("The project deadline is 2024.", 
           "Plans for 2025 are already underway.", 
           "The conference is scheduled for early 2021.", 
           "No specific year mentioned.")

# 检测是否包含“2024”
contains_year <- str_detect(texts, "2024")
contains_year

结果为:

[1]  TRUE FALSE FALSE FALSE

结果显示,第一条字符串包含了“2024”,第二条字符串中则不包含“2024”,第三条字符串也不包含“2024”,第四条字符串又不包含“2024”,这样的结果也能清晰地看出来。

2、 获取匹配模式成功的字符索引

str_which()函数返回匹配模式成功的字符索引。对于上述示例,str_which()可以这样使用:

str_which(country, "an")

结果为:

[1] 2 3

这说明“American”和“Japan”是包含“an”的字符串,其索引分别是2和3。

3、统计匹配模式的数量

str_count()函数可以用来统计匹配模式在每个字符串中出现的次数。例如:

str_count(country, "an")

输出结果为:

[1] 0 1 1 0

这里“American”和“Japan”中各有1个“an”,而其他字符串中没有。

4、应用例子

下面我们将使用一个模拟的医疗记录数据集,其中包含各种病历记录,我们将用这些函数来查找和统计记录中包含特定症状或疾病的条目。

library(stringr)  # 加载stringr包,以便使用字符串处理函数

# 示例医疗记录数据,包含多个病人的症状描述
records <- c("Patient 1: Diagnosed with type 2 diabetes and diabetes complications.",
             "Patient 2: No history of diabetes, but has high cholesterol.",
             "Patient 3: Type 1 diabetes and diabetes management issues.",
             "Patient 4: History of asthma and seasonal allergies.",
             "Patient 5: Diabetes management plan reviewed in last visit, diabetes treatment was updated.")

# 使用str_which()函数找出包含“diabetes”这一模式的记录的索引
# str_which()返回的是符合条件的记录的索引位置
indices_with_diabetes <- str_which(records, "diabetes")

# 使用str_count()函数计算每条记录中“diabetes”出现的次数
# str_count()返回的是一个向量,其中每个元素表示对应记录中“diabetes”的出现次数
count_diabetes <- str_count(records, "diabetes")

# 根据之前得到的索引提取包含“diabetes”的记录
# records_with_diabetes中包含了所有包含“diabetes”的记录
records_with_diabetes <- records[indices_with_diabetes]

# 使用索引提取“diabetes”出现次数
# counts_in_records中包含了对应记录中“diabetes”的出现次数
counts_in_records <- count_diabetes[indices_with_diabetes]

# 打印结果:遍历每条包含“diabetes”的记录,并显示记录的索引、内容以及“diabetes”的出现次数
for (i in seq_along(records_with_diabetes)) {
  # 使用sprintf()格式化字符串,将记录的索引、内容和出现次数插入到打印的文本中
  cat(sprintf("Record %d: \"%s\" contains 'diabetes' %d time(s).\n",
              indices_with_diabetes[i], records_with_diabetes[i], counts_in_records[i]))
}

结果为:

Record 1: "Patient 1: Diagnosed with type 2 diabetes and diabetes complications." contains 'diabetes' 2 time(s).
Record 2: "Patient 2: No history of diabetes, but has high cholesterol." contains 'diabetes' 1 time(s).
Record 3: "Patient 3: Type 1 diabetes and diabetes management issues." contains 'diabetes' 2 time(s).
Record 5: "Patient 5: Diabetes management plan reviewed in last visit, diabetes treatment was updated." contains 'diabetes' 1 time(s).

二、提取和匹配模式

1、提取匹配模式的第一个值

.......后面部分请看原文

欢迎订阅我们专栏,深度系统地学习R语言。 

为帮助大家更出色地掌握临床统计、数据挖掘以及人工智能建模的入门知识和应用,由于众多同学在计算机编程上经验欠缺,特此开设《R 语言与数据科学的终极指南》专栏。该专栏每周至少会定期更新三篇,直到整个专栏更新完成。每篇文章都在 5000 字以上,质量平均分高达 94 分。要提醒大家的是,每结束一个章节,专栏的优惠力度就会减小,当下正是订阅的最佳优惠时段,诚邀各位积极订阅!

专栏《R 语言与数据科学的终极指南》链接:https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数智时代 | DAT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值