在传统的回归分析中,我们最熟悉的方法莫过于“最小二乘回归”(Ordinary Least Squares, OLS),它通过最小化预测值与真实值之间误差的平方和,来估计因变量(响应变量)的条件均值。然而,在现实世界中,数据的分布常常存在异质性、偏态、极端值或不满足线性回归所要求的正态性和方差齐性等假设,这时候,最小二乘法所提供的信息就显得片面甚至误导。
“分位数回归”(Quantile Regression)作为一种对传统线性回归的拓展方法,能够估计因变量在不同分位点(例如中位数、四分位数等)上的条件分布,从而提供更加全面、灵活和稳健的数据建模手段。
一、认识分位数回归
分位数回归由Roger Koenker和Gilbert Bassett于1978年正式提出,它不再局限于建模“条件均值”,而是估计“条件分位数”(例如第10、第25、第50、第90百分位点)与自变量之间的关系。举个例子,假设我们研究收入(因变量)与教育年限(