2篇7章10节:分位数回归的原理和应用场景,并用R进行代码演示

在传统的回归分析中,我们最熟悉的方法莫过于“最小二乘回归”(Ordinary Least Squares, OLS),它通过最小化预测值与真实值之间误差的平方和,来估计因变量(响应变量)的条件均值。然而,在现实世界中,数据的分布常常存在异质性、偏态、极端值或不满足线性回归所要求的正态性和方差齐性等假设,这时候,最小二乘法所提供的信息就显得片面甚至误导。

“分位数回归”(Quantile Regression)作为一种对传统线性回归的拓展方法,能够估计因变量在不同分位点(例如中位数、四分位数等)上的条件分布,从而提供更加全面、灵活和稳健的数据建模手段。

一、认识分位数回归

分位数回归由Roger Koenker和Gilbert Bassett于1978年正式提出,它不再局限于建模“条件均值”,而是估计“条件分位数”(例如第10、第25、第50、第90百分位点)与自变量之间的关系。举个例子,假设我们研究收入(因变量)与教育年限(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MD分析

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值