CUDA开发系列笔记
第一章 CUDA的相关基本概念
前言
个人小记录,如有错误请指正
一、显卡驱动
与其他硬件一样,即显卡与操作系统之间的中间层,通过向上提供结构供操作系统调用显卡,可以通过GPU driver installer安装,会附带安装nvidia-smi。
nvidia-smi:GPU的性能监控和管理工具,可以查看显卡驱动版本以及支持的CUDA,可以通过下面的指令实时监控:
watch -n 0.1 nvidia-smi
二、CUDA
CUDA英文全称是Compute Unified Device Architecture,是NVIDIA推出的并行计算架构,与MPI等并行工具一样,提供API供开发者使用GPU并行计算,包括CUDA C和CUDA C++编程工具
三、cuDNN
cuDNN英文全称CUDA Deep Neural Network,是基于CUDA专门针对深度学习中的运算进行优化的一个库,包括卷积运算等操作均做了相应的加速优化。
四、CUDA Toolkit
用于CUDA开发的工具包,包含CUDA C和CUDA C++的编译器nvcc(bin文件夹下,它建立在NVVM优化器之上,而NVVM优化器本身构建在LLVM编

本文是CUDA开发系列笔记,详细介绍了CUDA、CUDA Toolkit、cuDNN以及nvcc在GPU计算和深度学习中的角色。CUDA是NVIDIA的并行计算架构,CUDA Toolkit提供开发工具,包括编译器nvcc。cuDNN是针对深度学习优化的库,而nvidia-smi用于GPU监控。安装CUDA Toolkit可以获得nvcc,但需注意CUDA驱动和runtime版本的对应。深度学习框架通常直接调用CUDA库,无需直接编写CUDA代码。
最低0.47元/天 解锁文章
2513

被折叠的 条评论
为什么被折叠?



