【C++ 第十三章】AVL 二叉平衡树

1. AVL树的概念

        普通二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。

        因此,两位俄罗斯的数学家 G.M.Adelson-Velskii 和 E.M.Landis 在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

即为 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过 1 (-1/0/1)

子树高度:即 从根节点开始算,一直到最后一层叶子节点 中,一共多少树层

我们本文默认 左右子树高度之差 = 右子树高度 - 左子树高度

(右减左 和 左减右 都一样的,意义一样)

如果一棵二叉搜索树是高度平衡的,它就是AVL树。

如果它有 N 个结点,其高度可保持在 logN 层 ,搜索时间复杂度O(logN)。

下图中数字为  左右子树高度之差


2. AVL树节点 类

节点默认  key/value 键值对模型

template<class K, class V>
struct AVLTreeNode 
{
	typedef AVLTreeNode<K, V> Node;

	pair<K, V> _kv;
	Node* _left;
	Node* _right;
	Node* _parent;
	int _bf; // 存平衡因子:balance factor

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	{}
};

3. AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

1. 按照二叉搜索树的方式插入新节点

2. 调整节点的平衡因子

3.1 按照二叉搜索树的方式插入新节点

// 插入
Node* insert(const pair<K, V>& kv) {
	if (_root == nullptr) {
		_root = new Node(kv);
		return _root;
	}

	Node* cur = _root;
	Node* parent = cur;
	while (cur) {

		if ((cur->_kv).first < kv.first) {
			parent = cur;
			cur = cur->_right;
		}
		else if ((cur->_kv).first > kv.first) {
			parent = cur;
			cur = cur->_left;
		}
	}

	// 在 cur 的位置插入该节点
	cur = new Node(kv);

	if ((parent->_kv).first > kv.first) parent->_left = cur;
	else  parent->_right = cur;

	cur->_parent = parent; // 每个节点连接父节点

	// 更新平衡因子
	// .....

	return _root;
}

3.2 调整节点的平衡因子

前面提过 左右子树高度之差 即为 平衡因子


插入一个节点,会影响子树的高度,因此影响一系列 平衡因子

当前插入一个节点 cur ,其 父节点 parent 和 祖先节点 的 平衡因子 都可能被影响

⭐例如:

1、当在 节点 8 的左边插入一个 节点,节点 8 的 平衡因子变成 0,其他的节点不变

2、当在 节点 4 的右边插入一个 节点,节点 4 的 平衡因子变成 1,节点 3 的 平衡因子变成 0,其他的节点不变


插入节点,会影响部分祖先节点的平衡因子

⭐(1)更新平衡因子

插入在左子树,平衡因子--

插入在右子树,平衡因子++

⭐(2)处理 平衡因子 的 几种情况:

是否继续往上更新祖先,要看 parent 所在子树的高度是否变化

🐵1、 parent 的平衡因子  bf == 0

说明 parent 的平衡因子更新前是 1 or -1,

插入节点插入矮的那边 parent 所在子树的高度不变,

说明刚好平衡,不需要继续往上更新

🐵2. parent 的平衡因子 bf == 1 or -1

说明 parent 的平衡因子更新前是 0:即两边高度一样,子树平衡

插入节点插入在任意一边 parent 所在的子树高度都会变化了

说明刚好打破平衡,继续向上更新

🐵3. parent 的平衡因子== 2 or -2

说明parent的平衡因子更新前是 1 or -1,插入节点插入在高的那边

进一步加剧了parent所在的子树的不平衡,已经违反违规了,

子树失衡,需要旋转处理


🐵4. 其他情况:都是不合理的,直接报错


 

注意看注释理解

// 更新平衡因子
while (parent) {

    // 插入在左边,父亲平衡因子 减减
    // 插入在右边,父亲平衡因子 加加
    if (cur == parent->_left) parent->_bf--;
    else if (cur == parent->_right) parent->_bf++;


    // 若 bf == 0:说明刚好平衡
    // 若 bf == 1 or -1:说明刚好打破平衡,但还算做平衡,继续向上更新
    // 若 bf == 2 or -2:说明失衡,旋转
    // 其他:其他情况都是不合理的,直接报错

    if (parent->_bf == 0) break;
    else if (parent->_bf == 1 || parent->_bf == -1) {
        cur = parent;
        parent = parent->_parent;
    }
    else if (parent->_bf == 2 || parent->_bf == -2) {
        // 旋转逻辑:
        // ...
    }
    else assert(false);
}

3.3 旋转逻辑

前面 3.2 节中提到,当 插入一个节点 parent 的平衡因子== 2 or -2 时,应该执行旋转

旋转有 四种类型:

RR 型、LL 型 、LR型、RL型

⭐RR 型旋转:左单旋

添加 节点 7 后:节点 3 的平衡因子变成 2

则要对 节点 3 执行旋转操作:因为 节点 5 是 右孩子,节点 6 也是 右孩子 

双 R,即 RR型,向左旋转一次


旋转逻辑 如图示:


动图演示 旋转:

(注:动图取材取自 B站up主:蓝不过海呀 (若侵权即删))

代码示例
// RR型:左单旋
void rotateRR(Node* parent) {
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	Node* parentParent = parent->_parent;

	// 1、subRL 变成 parent 的右孩子
	parent->_right = subRL;
	if (subRL) subRL->_parent = parent;  // subRL 是有可能为 空的


	// 2、parent变成subR的左孩子
	subR->_left = parent;
	parent->_parent = subR;


	// 3、subR变成当前子树的根
	if (parentParent) {
		if (parent == parentParent->_right)
			parentParent->_right = subR;
		else parentParent->_left = subR;

		subR->_parent = parentParent;
	}
	// 如果 parentParent == nullptr:说明 parent 是该树的 _root,_root 的 parent 是空
	else {
		_root = subR;
		subR->_parent = nullptr;
	}


	// 单独处理 平衡因子
	subR->_bf = 0;
	parent->_bf = 0;
}

⭐LL 型旋转:右单旋

添加 节点 2 后:节点 5 的平衡因子变成 -2

节点 5 :左子树高度 = 3 ,右子树高度 = 1 ,则节点 5 的平衡因子 = -2,需要旋转

旋转逻辑 如图示:


动图演示 旋转:

(注:动图取材取自 B站up主:蓝不过海呀 (若侵权即删))

代码示例

其实代码逻辑 和 上面的 RR型就是刚好 镜像相反

// LL型:右单旋
void rotateLL(Node* parent) {
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	Node* parentParent = parent->_parent;

	// 1、subLR变成parent的左孩子
	parent->_left = subLR;
	if (subLR) subLR->_parent = parent;  // subRL 是有可能为 空的 

	// 2、parent变成subL的右孩子
	subL->_right = parent;
	parent->_parent = subL;

	// 3、subL变成当前子树的根
	if (parentParent) {
		if (parent == parentParent->_right)
			parentParent->_right = subL;
		else parentParent->_left = subL;

		subL->_parent = parentParent;
	}
	// 如果 parentParent == nullptr:说明 parent 是该树的 _root,_root 的 parent 是空
	else {
		_root = subL;
		subL->_parent = nullptr;
	}



	subL->_bf = 0;
	parent->_bf = 0;
}

⭐LR 型旋转:subL 先 左旋,parent 再 右旋(先 L 后 R)

旋转逻辑 如图示:


动图演示 旋转:

(注:动图取材取自 B站up主:蓝不过海呀 (若侵权即删))

代码示例

双旋,其实直接复用 前面两个单旋的函数即可,无需自己再实现

关于平衡因子的更新:因为单旋函数中,都是直接将 平衡因子置为 0

       而双旋的平衡因子会改变,因此需要 先旋转后,再添加处理平衡因子的逻辑

各个节点平衡因子的更新数值如何确定:这个直接看双旋后各个节点的平衡因子为多少即可,是固定值

// LR 型:subL 先 左旋, parent 右旋
void rotateLR(Node* parent) {
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	int bf = subLR->_bf;

	rotateRR(parent->_left);
	rotateLL(parent);



	// 双旋后,各个节点平衡因子的更新
	if (bf == -1) {
		parent->_bf = 1;
		subL->_bf = 0;
		subLR->_bf = 0;
	}
	else if (bf == 1) {
		parent->_bf = 0;
		subL->_bf = -1;
		subLR->_bf = 0;
	}
	else if (bf == 0) {
		parent->_bf = 0;
		subL->_bf = 0;
		subLR->_bf = 0;
	}
	else assert(false);
}

⭐RL 型旋转:subR 先 右旋,parent 再 左旋(先 R 后 L)

这个原理也就是上面的 LR 型旋转 刚好镜像相反

动图演示 旋转:

(注:动图取材取自 B站up主:蓝不过海呀 (若侵权即删))

代码示例
// RL 型:subR 先 右旋, parent 左旋
void rotateRL(Node* parent) {
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	int bf = subRL->_bf;

	rotateLL(parent->_right);
	rotateRR(parent);


	// 双旋后,各个节点平衡因子的更新
	if (bf == -1) {
		parent->_bf = 0;
		subR->_bf = 1;
		subRL->_bf = 0;
	}
	else if (bf == 1) {
		parent->_bf = -1;
		subR->_bf = 0;
		subRL->_bf = 0;
	}
	else if (bf == 0) {
		parent->_bf = 0;
		subR->_bf = 0;
		subRL->_bf = 0;
	}
	else assert(false);
}

⭐关于 双旋 中 平衡因子的更新逻辑

上面 LR 型旋转 和  RL 型旋转 在 复用单旋的函数后,还需要对 平衡因子进行处理更新

我们以 LR 型旋转为例,解释为什么 可以根据 subRL 的 平衡因子的数值 来区分几种情况

int bf = subLR->_bf;

// 双旋后,各个节点平衡因子的更新
if (bf == -1) {
	parent->_bf = 1;
	subL->_bf = 0;
	subLR->_bf = 0;
}
else if (bf == 1) {
	parent->_bf = 0;
	subL->_bf = -1;
	subLR->_bf = 0;
}
else if (bf == 0) {
	parent->_bf = 0;
	subL->_bf = 0;
	subLR->_bf = 0;
}
else assert(false);

下面三种情况:

初始状态下,parent 和 subL 都是固定相同的唯一不同的是 subLR 的,因此可以以 subLR 作为区分指标

情况一:bf == -1

情况二:bf == 1

情况三:bf == 0




3.4 旋转 逻辑的代码运用  与  相关总结

⭐总结: 假如以 parent 为根的子树不平衡,即 parent 的平衡因子为 2 或者 -2,分以下情况考虑

1. parent 的平衡因子为2,说明 parent 的右子树高,设 parent 的右子树的根为 subR

        当 subR 的平衡因子为1时,执行 左单旋

        当 subR 的平衡因子为-1时,执行 右左双旋 

2. parent 的平衡因子为 -2,说明 parent 的左子树高,设 parent 的左子树的根为 subL

        当 subL 的平衡因子为 -1 是,执行 右单旋

        当 subL 的平衡因子为 1 时,执行 左右双旋

旋转完成后,原 parent 为根的子树个高度降低,已经平衡,不需要再向上更新(因此在旋转逻辑代码中,旋转完直接 break 退出循环)

⭐提炼上面的总结,转换为代码中条件为同号单旋,异号双旋

(注 : bf_P 即为 parent 的平衡因子, bf_C 即为 cur 的平衡因子)

bf_P == 2    &&     bf_C  == 1   :RR型 左单旋

bf_P == -2    &&     bf_C  == -1   :LL型 右单旋

bf_P == -2    &&     bf_C  == 1   :LR型 左右双旋

bf_P == 2    &&     bf_C  == -1   :RL型 右左双旋

更新平衡因子,当 平衡因子 == 2 or -2 时,就要旋转

// 更新平衡因子
while (parent) {
	if (cur == parent->_left) parent->_bf--;
	else if (cur == parent->_right) parent->_bf++;



	// 若 bf == 0:说明刚好平衡
	// 若 bf == 1 or -1:说明刚好打破平衡,但还算做平衡,继续向上更新
	// 若 bf == 2 or -2:说明失衡,旋转
	// 其他:其他情况都是不合理的,直接报错



	if (parent->_bf == 0) break;
	else if (parent->_bf == 1 || parent->_bf == -1) {
		cur = parent;
		parent = parent->_parent;
	}

	else if (parent->_bf == 2 || parent->_bf == -2) {
		// 旋转:同号单旋,异号双旋
		// RR 型:左旋
		if (parent->_bf == 2 && cur->_bf == 1) rotateRR(parent);
		// LL 型:右旋
		if (parent->_bf == -2 && cur->_bf == -1) rotateLL(parent);
		// LR 型:subL 先 左旋, parent 右旋
		if (parent->_bf == -2 && cur->_bf == 1) {
			rotateLR(parent);
		}
		// RL 型:subR 先 右旋, parent 左旋
		if (parent->_bf == 2 && cur->_bf == -1) {
			rotateRL(parent);
		}
		break;  // 旋转完了就要 break 出去,否则会继续向上更新,导致 平衡因子出错
	}
	else assert(false);
}

4. AVL树的性能(讨论)

        AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 O(logN)。

        但是如果要对 AVL 树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置

        因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。(这种情况就推荐 我们下一个章节学习的 红黑树 )

5. AVL 树总代码:额外添加其他各种功能函数

额外添加:

Size :求二叉树的节点个数

Height:获取该树的高度

IsBalanceTree:判断本树是否平衡

  •         每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  •         节点的平衡因子是否计算正确

以及 基础函数:拷贝构造、赋值重载、析构函数

#pragma once
#include<iostream>
#include<vector>
#include<assert.h>
using namespace std;

/*
1、先手搓一棵二叉搜索树
*/

template<class K, class V>
struct AVLTreeNode 
{
	typedef AVLTreeNode<K, V> Node;

	pair<K, V> _kv;
	Node* _left;
	Node* _right;
	Node* _parent;
	int _bf; // 存平衡因子:balance factor

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	{}
	
};

template<class K, class V>
class AVLTree
{
public:
	typedef AVLTreeNode<K, V> Node;

	AVLTree() = default;

	~AVLTree() {
		destory(_root);
		_root = nullptr;
	}

	// 拷贝构造
	AVLTree(const AVLTree<K, V>& t) {
		_root = CopyTree(t._root);
	}

	// 赋值重载
	AVLTree<K, V>& operator=(const AVLTree<K, V>& t) {
		AVLTree tmp(t);
		std::swap(_root, tmp._root);
		return *this;
	}



	// 查找
	bool find(const K& key) const {
		Node* cur = _root;
		while (cur) {
			if ((cur->_kv).first < key) {
				cur = cur->_right;
			}
			else if ((cur->_kv).first > key) {
				cur = cur->_left;
			}
			else return true;
		}
		return false;
	}

	// 插入
	Node* insert(const pair<K, V>& kv) {
		if (_root == nullptr) {
			_root = new Node(kv);
			return _root;
		}

		Node* cur = _root;
		Node* parent = cur;
		while (cur) {
			
			if ((cur->_kv).first < kv.first) {
				parent = cur;
				cur = cur->_right;
			}
			else if ((cur->_kv).first > kv.first) {
				parent = cur;
				cur = cur->_left;
			}
		}

		// 在 cur 的位置插入该节点
		cur = new Node(kv);
		
		if ((parent->_kv).first > kv.first) parent->_left = cur;
		else  parent->_right = cur;

		cur->_parent = parent; // 每个节点连接父节点

		// 更新平衡因子
		while (parent) {
			if (cur == parent->_left) parent->_bf--;
			else if (cur == parent->_right) parent->_bf++;

			// 若 bf == 0:说明刚好平衡
			// 若 bf == 1 or -1:说明刚好打破平衡,但还算做平衡,继续向上更新
			// 若 bf == 2 or -2:说明失衡,旋转
			// 其他:其他情况都是不合理的,直接报错

			if (parent->_bf == 0) break;
			else if (parent->_bf == 1 || parent->_bf == -1) {
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2) {
				// 旋转:同号单旋,异号双旋
				// RR 型:左旋
				if (parent->_bf == 2 && cur->_bf == 1) rotateRR(parent);
				// LL 型:右旋
				if (parent->_bf == -2 && cur->_bf == -1) rotateLL(parent);
				// LR 型:subL 先 左旋, parent 右旋
				if (parent->_bf == -2 && cur->_bf == 1) {
					rotateLR(parent);
				}
				// RL 型:subR 先 右旋, parent 左旋
				if (parent->_bf == 2 && cur->_bf == -1) {
					rotateRL(parent);
				}
				break;  // 旋转完了就要 break 出去,否则会继续向上更新,导致 平衡因子出错
			}
			else assert(false);
		}

		return _root;
	}
	

	// RR型:左单旋
	void rotateRR(Node* parent) {
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* parentParent = parent->_parent;

		// 1、subRL 变成 parent 的右孩子
		parent->_right = subRL;
		if (subRL) subRL->_parent = parent;  // subRL 是有可能为 空的


		// 2、parent变成subR的左孩子
		subR->_left = parent;
		parent->_parent = subR;


		// 3、subR变成当前子树的根
		if (parentParent) {
			if (parent == parentParent->_right)
				parentParent->_right = subR;
			else parentParent->_left = subR;

			subR->_parent = parentParent;
		}
		// 如果 parentParent == nullptr:说明 parent 是该树的 _root,_root 的 parent 是空
		else {
			_root = subR;
			subR->_parent = nullptr;
		}

		
		// 单独处理 平衡因子
		subR->_bf = 0;
		parent->_bf = 0;
	}

	// LL型:右单旋
	void rotateLL(Node* parent) {
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		Node* parentParent = parent->_parent;

		// 1、subLR变成parent的左孩子
		parent->_left = subLR;
		if (subLR) subLR->_parent = parent;  // subRL 是有可能为 空的 

		// 2、parent变成subL的右孩子
		subL->_right = parent;
		parent->_parent = subL;

		// 3、subL变成当前子树的根
		if (parentParent) {
			if (parent == parentParent->_right)
				parentParent->_right = subL;
			else parentParent->_left = subL;

			subL->_parent = parentParent;
		}
		// 如果 parentParent == nullptr:说明 parent 是该树的 _root,_root 的 parent 是空
		else {
			_root = subL;
			subL->_parent = nullptr;
		}

		
		
		subL->_bf = 0;
		parent->_bf = 0;
	}

	// LR 型:subL 先 左旋, parent 右旋
	void rotateLR(Node* parent) {
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		rotateRR(parent->_left);
		rotateLL(parent);



		// 双旋后,各个节点平衡因子的更新
		if (bf == -1) {
			parent->_bf = 1;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == 1) {
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else if (bf == 0) {
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else assert(false);
	}

	// RL 型:subR 先 右旋, parent 左旋
	void rotateRL(Node* parent) {
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		rotateLL(parent->_right);
		rotateRR(parent);


		// 双旋后,各个节点平衡因子的更新
		if (bf == -1) {
			parent->_bf = 0;
			subR->_bf = 1;
			subRL->_bf = 0;
		}
		else if (bf == 1) {
			parent->_bf = -1;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else if (bf == 0) {
			parent->_bf = 0;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else assert(false);
	}

	// 删除分三种情况
	// 1、节点没有孩子
	// 2、节点只有一个孩子:分是左孩子,还是右孩子
	// 3、节点有两个孩子

	// 删除默认删除中序遍历第一个和数值相等的节点
	Node* erase(const K& key) {
		if (_root == nullptr) {
			cout << "整棵树已被删除" << '\n';
			return _root;
		}

		// 看这个元素是否存在
		if (!find(key)) {
			cout << "节点不存在" << '\n';
			return _root;  // 我们这里删除操作失败,也返回 原树
		}


		
		// 查找操作
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur) {
			if ((cur->_kv).first < key) {
				parent = cur;
				cur = cur->_right;
			}
			else if ((cur->_kv).first > key) {
				parent = cur;
				cur = cur->_left;
			}
			else break;
		}

		// 删除操作
		if (cur->_left == nullptr) {
			if (parent == nullptr) {
				_root = cur->_right;
			}
			else {
				if ((parent->_kv).first < key) {
					parent->_right = cur->_right;
				}
				else parent->_left = cur->_right;
			}
		
			delete cur;
			cur = nullptr;
		}
		else if (cur->_right == nullptr) {
			if (parent == nullptr) {
				_root = cur->_left;
			}
			else {
				if ((parent->_kv).first < key) {
					parent->_right = cur->_left;
				}
				else parent->_left = cur->_left;
			}
			delete cur;
			cur = nullptr;
		}
		else {
			// 取左子树最大值:即左子树的最右边的节点
			// 取右子树最小值:即右子树的最左边的节点
			// 我们这里采取第二种方法

			// 不断向左遍历
			Node* MinRight = cur->_right;
			Node* MinRight_parent = cur;
			while (MinRight->_left) {  // 这里很奇怪
				MinRight_parent = MinRight;
				MinRight = MinRight->_left;
			}
			
			if ((MinRight_parent->_kv).first < (MinRight->_kv).first) {
				MinRight_parent->_right = MinRight->_right;
			}
			else MinRight_parent->_left = MinRight->_right;

			(cur->_kv).first = (MinRight->_kv).first;
			
			delete MinRight;
		}


		return _root;
	}

	// 中序遍历
	void InOrder() {
		_InOrder(_root);
		cout << '\n';
	}

	
	// 获取根节点
	Node* GetRoot() {
		return _root;
	}

	// 获取该树的高度
	void Height() {
		return _Height(_root);
	}
	// 本树是否平衡
	bool IsBalanceTree() {
		return _IsBalanceTree(_root);
	}
	// 获取节点个数
	int Size() {
		return _Size(_root);
	}

private:
	int _Size(Node* pRoot) {
		if (pRoot == nullptr) return 0;
		//if (pRoot->_left == nullptr && pRoot->_right == nullptr) return 1;

		return 1 + _Size(pRoot->_left) + _Size(pRoot->_right);
	}
	int _Height(Node* pRoot) {
		if (pRoot == nullptr)
			return 0;

		return 1 + max(_Height(pRoot->_left), _Height(pRoot->_right));
	}
	bool _IsBalanceTree(Node* pRoot)
	{
		// 空树也是AVL树
		if (nullptr == pRoot) return true;

		// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
		int leftHeight = _Height(pRoot->_left);
		int rightHeight = _Height(pRoot->_right);
		int diff = rightHeight - leftHeight;

		// 这个判断平衡因子的方法 直接 帮我检查出 之前没写 break 导致平衡因子自己更新
		// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
		// pRoot平衡因子的绝对值超过1,则一定不是AVL树
		if (diff != pRoot->_bf || (diff > 1 || diff < -1))
			return false;
		// pRoot的左和右如果都是AVL树,则该树一定是AVL树
		return _IsBalanceTree(pRoot->_left) && _IsBalanceTree(pRoot->_right);
	}


	// 销毁一棵树:后序遍历
	void destory(Node* root) {
		if (root == nullptr) {
			return;
		}

		destory(root->_left);
		destory(root->_right);
		delete root;
	}

	// 拷贝一棵树
	Node* CopyTree(const Node* root) {
		if (root == nullptr) {
			return nullptr;
		}

		Node* newRoot = new Node(root->_kv);
		newRoot->_left = CopyTree(root->_left);
		newRoot->_right = CopyTree(root->_right);
		return newRoot;
	}

	void _InOrder(const Node* root) {
		if (root == nullptr) {
			return;
		}
		_InOrder(root->_left);
		cout << (root->_kv).first  << " : " << (root->_kv).second << '\n';
		_InOrder(root->_right);
	}

	Node* _root = nullptr;
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值