隐马尔科夫模型HMM

0. 什么时候使用马尔科夫模型

状态随机,下一阶段的状态只与“当前有关”
在这里插入图片描述

1.隐马尔科夫模型

隐马尔科夫模型(Hidden Markov Model)是关于时序的概率模型,描述由一个隐藏的马尔科夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测从而产生观测随机序列的过程,隐藏的马尔科夫链随机生成的状态的序列,称为状态序列;每个状态生成一个规则,而由此产生的观测的随机序列称为观测序列。序列的每一个位置又可以看作是一个时刻。

2. 隐马尔科夫模型基本出发点

观察状态和隐藏状态并不是一一对应的
在这里插入图片描述
z表示隐藏状态,x表示观察状态,隐藏状态可以生成观察状态,并且隐藏状态可以相互转移

在这里插入图片描述

3.组成与要解决的问题

3.1 组成

必须知道的:初始概率、隐藏状态转移概率矩阵、生成观测状态概率矩阵
在这里插入图片描述

3.2 要解决的问题

  1. 出现了一系列的观察状态,通过模型计算出现的概率
  2. 在已知观测序列的情况下,求解模型参数
  3. 求状态序列最有可能是什么
    在这里插入图片描述

4.暴力求解方法

把所有的隐藏序列都列出来
在这里插入图片描述

5复杂度计算

在这里插入图片描述

6.前向算法

在这里插入图片描述
当t=T时,即走完全部序列
在这里插入图片描述
在这里插入图片描述

7.前向算法求解实例

拿的球,比如说是(红,白,红)这是观测序列,隐藏状态是分别从(2,1,3)号盒子中拿出来
在这里插入图片描述

π向量表示初始从三个盒子中拿球的概率
在这里插入图片描述
A向量矩阵表示这次(列)拿1号盒子,下次(行)选1或2或3的概率
在这里插入图片描述
B向量矩阵表示从1号盒子拿红球或白球的概率
在这里插入图片描述
观测序列,观测状态、隐藏状态:
在这里插入图片描述
具体计算:
在这里插入图片描述
在这里插入图片描述

8. Baum-Welch算法

当观测序列和状态序列都已知:
在这里插入图片描述
当观测序列已知,状态序列未知:
在这里插入图片描述
在这里插入图片描述

9. 参数求解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

10. 维特比算法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kacey Huang

感谢各位老板!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值